{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,3]],"date-time":"2024-09-03T10:18:15Z","timestamp":1725358695836},"reference-count":37,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2022,5,4]],"date-time":"2022-05-04T00:00:00Z","timestamp":1651622400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,5,4]],"date-time":"2022-05-04T00:00:00Z","timestamp":1651622400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100011157","name":"xi\u2019an institute of optics and precision mechanics","doi-asserted-by":"publisher","award":["Y855W31213"],"id":[{"id":"10.13039\/501100011157","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1007\/s10489-022-03481-9","type":"journal-article","created":{"date-parts":[[2022,5,4]],"date-time":"2022-05-04T17:03:05Z","timestamp":1651683785000},"page":"2026-2041","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Style transformed synthetic images for real world gaze estimation by using residual neural network with embedded personal identities"],"prefix":"10.1007","volume":"53","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6086-4191","authenticated-orcid":false,"given":"Quan","family":"Wang","sequence":"first","affiliation":[]},{"given":"Hui","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Ruo-Chen","family":"Dang","sequence":"additional","affiliation":[]},{"given":"Guang-Pu","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Hai-Feng","family":"Pi","sequence":"additional","affiliation":[]},{"given":"Frederick","family":"Shic","sequence":"additional","affiliation":[]},{"given":"Bing-liang","family":"Hu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,5,4]]},"reference":[{"key":"3481_CR1","first-page":"39","volume-title":"Eye tracking and eye-based human\u2013computer interaction","author":"P Majaranta","year":"2014","unstructured":"Majaranta P, Bulling A (2014) Eye tracking and eye-based human\u2013computer interaction. Springer, Berlin, pp 39\u201365"},{"key":"3481_CR2","doi-asserted-by":"crossref","unstructured":"Sugano Y, Zhang X, Bulling A (2016) Aggregaze: Collective estimation of audience attention on public displays. In: Symposium on user interface software & technology","DOI":"10.1145\/2984511.2984536"},{"key":"3481_CR3","doi-asserted-by":"publisher","first-page":"69212","DOI":"10.1109\/ACCESS.2020.2986815","volume":"8","author":"A Ali","year":"2020","unstructured":"Ali A, Kim Y-G (2020) Deep fusion for 3d gaze estimation from natural face images using multi-stream cnns. IEEE Access 8:69212\u201369221. https:\/\/doi.org\/10.1109\/ACCESS.2020.2986815","journal-title":"IEEE Access"},{"key":"3481_CR4","unstructured":"Per\u00e9z A, C\u00f3rdoba ML, Garcia A, M\u00e9ndez R, Munoz M, Pedraza JL, Sanchez F (2003) A precise eye-gaze detection and tracking system"},{"key":"3481_CR5","unstructured":"Young D, Tunley H, Samuels R (1995) Specialised hough transform and active contour methods for real-time eye tracking. University of Sussex, Cognitive and Computing Science, Technical Report 386"},{"issue":"6","key":"3481_CR6","doi-asserted-by":"publisher","first-page":"1124","DOI":"10.1109\/TBME.2005.863952","volume":"53","author":"ED Guestrin","year":"2006","unstructured":"Guestrin ED, Eizenman M (2006) General theory of remote gaze estimation using the pupil center and corneal reflections. IEEE Transactions on Biomedical Engineering 53(6):1124\u20131133. https:\/\/doi.org\/10.1109\/TBME.2005.863952","journal-title":"IEEE Transactions on Biomedical Engineering"},{"issue":"10","key":"3481_CR7","doi-asserted-by":"publisher","first-page":"3274","DOI":"10.1364\/josaa.24.003274","volume":"24","author":"J Tabernero","year":"2007","unstructured":"Tabernero J, Benito A, Alc\u00f3n E, Artal P (2007) Mechanism of compensation of aberrations in the human eye. JOSA A 24(10):3274\u20133283. https:\/\/doi.org\/10.1364\/josaa.24.003274","journal-title":"JOSA A"},{"issue":"3","key":"3481_CR8","doi-asserted-by":"publisher","first-page":"192","DOI":"10.1097\/00054725-200108000-00003","volume":"7","author":"WJ Sandborn","year":"2001","unstructured":"Sandborn WJ, Loftus EV Jr, Colombel JF, Fleming KA, Seibold F, Homburger HA, Sendid B, Chapman RW, Tremaine WJ, Kaul DK et al (2001) Evaluation of serologic disease markers in a population-based cohort of patients with ulcerative colitis and crohn\u2019s disease. Inflammatory Bowel Diseases 7(3):192\u2013201. https:\/\/doi.org\/10.1097\/00054725-200108000-00003","journal-title":"Inflammatory Bowel Diseases"},{"issue":"6","key":"3481_CR9","doi-asserted-by":"publisher","first-page":"1389","DOI":"10.1016\/S0031-3203(01)00116-9","volume":"35","author":"S Sirohey","year":"2002","unstructured":"Sirohey S, Rosenfeld A, Duric Z (2002) A method of detecting and tracking irises and eyelids in video. Pattern Recogn 35(6):1389\u20131401. https:\/\/doi.org\/10.1016\/S0031-3203(01)00116-9","journal-title":"Pattern Recogn"},{"issue":"99","key":"3481_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TPAMI.2017.2778103","volume":"PP","author":"X Zhang","year":"2017","unstructured":"Zhang X, Sugano Y, Fritz M, Bulling A (2017) Mpiigaze: Real-world dataset and deep appearance-based gaze estimation. IEEE Trans Pattern Anal Mach Intell PP(99):1\u20131. https:\/\/doi.org\/10.1109\/TPAMI.2017.2778103","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"3481_CR11","doi-asserted-by":"crossref","unstructured":"Fischer T, Jin Chang H, Demiris Y (2018) Rt-gene: Real-time eye gaze estimation in natural environments. In: Proceedings of the European conference on computer vision (ECCV), pp 334\u2013352","DOI":"10.1007\/978-3-030-01249-6_21"},{"key":"3481_CR12","doi-asserted-by":"publisher","unstructured":"Lu F, Okabe T, Sugano Y, Sato Y (2011) A head pose-free approach for appearance-based gaze estimation. In: BMVC, pp 1\u201311, DOI https:\/\/doi.org\/10.5244\/C.25.126, (to appear in print)","DOI":"10.5244\/C.25.126"},{"key":"3481_CR13","doi-asserted-by":"crossref","unstructured":"Funes Mora KA, Odobez J-M (2012) Gaze estimation from multimodal kinect data. In: IEEE Conference in computer vision and pattern recognition, workshop on gesture recognition","DOI":"10.1109\/CVPRW.2012.6239182"},{"key":"3481_CR14","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"key":"3481_CR15","doi-asserted-by":"crossref","unstructured":"Huang X, Belongie S (2017) Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE international conference on computer vision, pp 1501\u20131510","DOI":"10.1109\/ICCV.2017.167"},{"key":"3481_CR16","doi-asserted-by":"crossref","unstructured":"Sugano Y, Matsushita Y, Sato Y (2014) Learning-by-synthesis for appearance-based 3d gaze estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1821\u20131828","DOI":"10.1109\/CVPR.2014.235"},{"key":"3481_CR17","unstructured":"Mora KAF, Monay F, Odobez JM (2014) Eyediap: A database for the development and evaluation of gaze estimation algorithms from rgb and rgb-d cameras"},{"issue":"11","key":"3481_CR18","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278\u20132324. https:\/\/doi.org\/10.1109\/5.726791","journal-title":"Proc IEEE"},{"key":"3481_CR19","doi-asserted-by":"crossref","unstructured":"Wood E, Baltrusaitis T, Zhang X, Sugano Y, Robinson P, Bulling A (2015) Rendering of eyes for eye-shape registration and gaze estimation. In: Proceedings of the IEEE international conference on computer vision, pp 3756\u20133764","DOI":"10.1109\/ICCV.2015.428"},{"key":"3481_CR20","doi-asserted-by":"crossref","unstructured":"Zhang X, Sugano Y, Fritz M, Bulling A (2015) Appearance-based gaze estimation in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4511\u20134520","DOI":"10.1109\/CVPR.2015.7299081"},{"key":"3481_CR21","doi-asserted-by":"crossref","unstructured":"Zhang X, Park S, Beeler T, Bradley D, Tang S, Hilliges O (2020) Eth-xgaze: A large scale dataset for gaze estimation under extreme head pose and gaze variation. In: European conference on computer vision. Springer, pp 365\u2013381","DOI":"10.1007\/978-3-030-58558-7_22"},{"issue":"2","key":"3481_CR22","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1109\/TCE.2019.2899869","volume":"65","author":"J Lemley","year":"2019","unstructured":"Lemley J, Kar A, Drimbarean A, Corcoran P (2019) Convolutional neural network implementation for eye-gaze estimation on low-quality consumer imaging systems. IEEE Trans Consum Electron 65 (2):179\u2013187. https:\/\/doi.org\/10.1109\/TCE.2019.2899869","journal-title":"IEEE Trans Consum Electron"},{"key":"3481_CR23","unstructured":"Peng X, Sun B, Ali K, Saenko K (2014) Exploring invariances in deep convolutional neural networks using synthetic images, 2(4)"},{"key":"3481_CR24","doi-asserted-by":"crossref","unstructured":"Park S, Mello SD, Molchanov P, Iqbal U, Hilliges O, Kautz J (2019) Few-shot adaptive gaze estimation. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp 9368\u20139377","DOI":"10.1109\/ICCV.2019.00946"},{"key":"3481_CR25","doi-asserted-by":"crossref","unstructured":"Krafka K, Khosla A, Kellnhofer P, Kannan H, Bhandarkar S, Matusik W, Torralba A (2016) Eye tracking for everyone. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2176\u20132184","DOI":"10.1109\/CVPR.2016.239"},{"key":"3481_CR26","doi-asserted-by":"publisher","unstructured":"Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672\u20132680, DOI https:\/\/doi.org\/10.1364\/josaa.24.003274, (to appear in print)","DOI":"10.1364\/josaa.24.003274"},{"key":"3481_CR27","doi-asserted-by":"crossref","unstructured":"Shrivastava A, Pfister T, Tuzel O, Susskind J, Wang W, Webb R (2017) Learning from simulated and unsupervised images through adversarial training. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2107\u20132116","DOI":"10.1109\/CVPR.2017.241"},{"key":"3481_CR28","doi-asserted-by":"crossref","unstructured":"Yu Y, Gong Z, Zhong P, Shan J (2017) Unsupervised representation learning with deep convolutional neural network for remote sensing images. In: International conference on image and graphics. Springer, pp 97\u2013108","DOI":"10.1007\/978-3-319-71589-6_9"},{"key":"3481_CR29","doi-asserted-by":"crossref","unstructured":"Isola P, Zhu J-Y, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1125\u20131134","DOI":"10.1109\/CVPR.2017.632"},{"key":"3481_CR30","doi-asserted-by":"crossref","unstructured":"Wood E, Baltru\u0161aitis T, Morency LP, Robinson P, Bulling A (2016) Learning an appearance-based gaze estimator from one million synthesised images","DOI":"10.1145\/2857491.2857492"},{"key":"3481_CR31","unstructured":"Kingma D, Ba J (2014) Adam: A method for stochastic optimization. Computer Science"},{"key":"3481_CR32","doi-asserted-by":"crossref","unstructured":"Yang T-Y, Huang Y-H, Lin Y-Y, Hsiu P-C, Chuang Y-Y (2018) Ssr-net: a compact soft stagewise regression network for age estimation. In: IJCAI, vol 5, p 7","DOI":"10.24963\/ijcai.2018\/150"},{"key":"3481_CR33","first-page":"1097","volume":"25","author":"A Krizhevsky","year":"2012","unstructured":"Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25:1097\u20131105","journal-title":"Advances in Neural Information Processing Systems"},{"key":"3481_CR34","unstructured":"Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556"},{"key":"3481_CR35","doi-asserted-by":"crossref","unstructured":"Lind\u00e9n E., Sjostrand J, Proutiere A (2019) Learning to personalize in appearance-based gaze tracking. In: Proceedings of the IEEE\/CVF international conference on computer vision workshops","DOI":"10.1109\/ICCVW.2019.00145"},{"key":"3481_CR36","doi-asserted-by":"crossref","unstructured":"Xiong Y, Kim HJ, Singh V (2019) Mixed effects neural networks (menets) with applications to gaze estimation. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 7743\u20137752","DOI":"10.1109\/CVPR.2019.00793"},{"key":"3481_CR37","unstructured":"Liu G, Yu Y, Mora KAF, Odobez J-M (2018) A differential approach for gaze estimation with calibration. In: BMVC, vol 2, p 6"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03481-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-022-03481-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03481-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,4]],"date-time":"2023-01-04T04:49:49Z","timestamp":1672807789000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-022-03481-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5,4]]},"references-count":37,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2023,1]]}},"alternative-id":["3481"],"URL":"https:\/\/doi.org\/10.1007\/s10489-022-03481-9","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,5,4]]},"assertion":[{"value":"5 March 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 May 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors claim no conflicts of interest.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}}]}}