{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,31]],"date-time":"2025-03-31T10:43:33Z","timestamp":1743417813498,"version":"3.37.3"},"reference-count":64,"publisher":"Springer Science and Business Media LLC","issue":"15","license":[{"start":{"date-parts":[[2022,4,6]],"date-time":"2022-04-06T00:00:00Z","timestamp":1649203200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,4,6]],"date-time":"2022-04-06T00:00:00Z","timestamp":1649203200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2022,12]]},"DOI":"10.1007\/s10489-022-03451-1","type":"journal-article","created":{"date-parts":[[2022,4,6]],"date-time":"2022-04-06T23:02:33Z","timestamp":1649286153000},"page":"17864-17880","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":13,"title":["Video summarization with u-shaped transformer"],"prefix":"10.1007","volume":"52","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-7212-1755","authenticated-orcid":false,"given":"Yaosen","family":"Chen","sequence":"first","affiliation":[]},{"given":"Bing","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Yan","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Renshuang","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Weichen","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xuming","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Xinhua","family":"Suo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,4,6]]},"reference":[{"doi-asserted-by":"crossref","unstructured":"Li Y, Merialdo B (2010) Multi-video summarization based on video-mmr. In: 11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10 (pp. 1-4). IEEE","key":"3451_CR1","DOI":"10.1109\/CBMI.2010.5529899"},{"doi-asserted-by":"crossref","unstructured":"Zhao B, Xing EP (2014) Quasi real-time summarization for consumer videos. Inproceedings of the IEEE conference on computer vision and pattern recognition, pp 2513\u20132520","key":"3451_CR2","DOI":"10.1109\/CVPR.2014.322"},{"issue":"8","key":"3451_CR3","doi-asserted-by":"publisher","first-page":"3652","DOI":"10.1109\/TIP.2017.2695887","volume":"26","author":"X Li","year":"2017","unstructured":"Li X, Zhao B, Lu X (2017) A general framework for edited video and raw video summarization. IEEE Trans Image Process 26(8):3652\u20133664","journal-title":"IEEE Trans Image Process"},{"doi-asserted-by":"crossref","unstructured":"Meng J, Wang S, Wang H, Yuan J, Tan YP (2017) Video summarization via multi-view representative selection. In: proceedings of the IEEE International Conference on Computer Vision Workshops, pp 1189\u20131198","key":"3451_CR4","DOI":"10.1109\/ICCVW.2017.144"},{"doi-asserted-by":"crossref","unstructured":"Zhang K, Chao WL, Sha F, Grauman K (2016) Video summarization with long short-term memory. In: European conference on computer vision (pp. 766-782). Springer, Cham","key":"3451_CR5","DOI":"10.1007\/978-3-319-46478-7_47"},{"doi-asserted-by":"crossref","unstructured":"Mahasseni B, Lam M, Todorovic S (2017) Unsupervised video summarization with adversarial lstm networks. Inproceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp 202\u2013211","key":"3451_CR6","DOI":"10.1109\/CVPR.2017.318"},{"issue":"6","key":"3451_CR7","doi-asserted-by":"publisher","first-page":"1709","DOI":"10.1109\/TCSVT.2019.2904996","volume":"30","author":"Z Ji","year":"2019","unstructured":"Ji Z, Xiong K, Pang Y, Li X (2019) Video summarization with attention-based encoder\u2013decoder networks. IEEE Trans Circuits Syst Video Technol 30(6):1709\u20131717","journal-title":"IEEE Trans Circuits Syst Video Technol"},{"doi-asserted-by":"crossref","unstructured":"Wei H, Ni B, Yan Y, Yu H, Yang X, Yao C (2018, April) Video summarization via semantic attended networks. Inproceedings of the AAAI Conference on Artificial Intelligence (Vol. 32), 1","key":"3451_CR8","DOI":"10.1609\/aaai.v32i1.11297"},{"doi-asserted-by":"crossref","unstructured":"Zhou K, Qiao Y, Xiang T (2018, April) Deep reinforcement learning for unsupervised video summarization with diversity-representativeness reward. Inproceedings of the AAAI Conference on Artificial Intelligence (Vol.32), 1","key":"3451_CR9","DOI":"10.1609\/aaai.v32i1.12255"},{"issue":"6","key":"3451_CR10","doi-asserted-by":"publisher","first-page":"2654","DOI":"10.1109\/TIP.2018.2889265","volume":"28","author":"S Huang","year":"2018","unstructured":"Huang S, Li X, Zhang Z, Wu F, Han J (2018) User-ranking video summarization with multi-stage spatio\u2013temporal representation. IEEE Trans Image Process 28(6):2654\u20132664","journal-title":"IEEE Trans Image Process"},{"doi-asserted-by":"crossref","unstructured":"Rochan M, Ye L, Wang Y (2018) Video summarization using fully convolutional sequence networks. Inproceedings of the European Conference on Computer Vision (ECCV), pp 347\u2013363","key":"3451_CR11","DOI":"10.1007\/978-3-030-01258-8_22"},{"doi-asserted-by":"crossref","unstructured":"Fajtl J, Sokeh HS, Argyriou V, Monekosso D, Remagnino P (2018) Summarizing videos with attention. In: Asian Conference on Computer Vision (pp. 39-54). Springer, Cham","key":"3451_CR12","DOI":"10.1007\/978-3-030-21074-8_4"},{"key":"3451_CR13","doi-asserted-by":"publisher","first-page":"948","DOI":"10.1109\/TIP.2020.3039886","volume":"30","author":"W Zhu","year":"2020","unstructured":"Zhu W, Lu J, Li J, Zhou J (2020) DSNEt: A Flexible Detect-to-Summarize Network for Video Summarization. IEEE Trans Image Process 30:948\u2013962","journal-title":"IEEE Trans Image Process"},{"issue":"10","key":"3451_CR14","doi-asserted-by":"publisher","first-page":"3047","DOI":"10.1109\/TNNLS.2018.2851077","volume":"30","author":"J Song","year":"2018","unstructured":"Song J, Guo Y, Gao L, Li X, Hanjalic A, Shen HT (2018) From deterministic to generative: Multimodal stochastic RNNs for video captioning. IEEE transactions on neural networks and learning systems 30(10):3047\u20133058","journal-title":"IEEE transactions on neural networks and learning systems"},{"issue":"10","key":"3451_CR15","doi-asserted-by":"publisher","first-page":"3486","DOI":"10.1109\/TCSVT.2019.2919139","volume":"30","author":"J Gao","year":"2019","unstructured":"Gao J, Wang Q, Li X (2019) Pcc net: Perspective crowd counting via spatial convolutional network. IEEE Trans Circuits Syst Video Technol 30(10):3486\u20133498","journal-title":"IEEE Trans Circuits Syst Video Technol"},{"issue":"6","key":"3451_CR16","doi-asserted-by":"publisher","first-page":"1290","DOI":"10.1109\/TNNLS.2016.2518700","volume":"28","author":"L Niu","year":"2016","unstructured":"Niu L, Xu X, Chen L, Duan L, Xu D (2016) Action and event recognition in videos by learning from heterogeneous web sources. IEEE transactions on neural networks and learning systems 28(6):1290\u20131304","journal-title":"IEEE transactions on neural networks and learning systems"},{"issue":"10","key":"3451_CR17","doi-asserted-by":"publisher","first-page":"3989","DOI":"10.1109\/TNNLS.2019.2951680","volume":"31","author":"B Zhao","year":"2019","unstructured":"Zhao B, Li X, Lu X (2019) Property-constrained dual learning for video summarization. IEEE transactions on neural networks and learning systems 31(10):3989\u20134000","journal-title":"IEEE transactions on neural networks and learning systems"},{"issue":"8","key":"3451_CR18","doi-asserted-by":"publisher","first-page":"3652","DOI":"10.1109\/TIP.2017.2695887","volume":"26","author":"X Li","year":"2017","unstructured":"Li X, Zhao B, Lu X (2017) A general framework for edited video and raw video summarization. IEEE Trans Image Process 26(8):3652\u20133664","journal-title":"IEEE Trans Image Process"},{"doi-asserted-by":"crossref","unstructured":"Wang Q, Gao J, Lin W, Yuan Y (2019) Learning from synthetic data for crowd counting in the wild. Inproceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp 8198\u20138207","key":"3451_CR19","DOI":"10.1109\/CVPR.2019.00839"},{"doi-asserted-by":"crossref","unstructured":"Yao T, Mei T, Rui Y (2016) Highlight detection with pairwise deep ranking for first-person video summarization. Inproceedings of the IEEE conference on computer vision and pattern recognition, pp 982\u2013990","key":"3451_CR20","DOI":"10.1109\/CVPR.2016.112"},{"doi-asserted-by":"crossref","unstructured":"Liu T, Kender JR (2002) Optimization algorithms for the selection of key frame sequences of variable length. In: European conference on computer vision (pp. 403-417). Springer, Berlin, Heidelberg","key":"3451_CR21","DOI":"10.1007\/3-540-47979-1_27"},{"unstructured":"Song Y, Vallmitjana J, Stent A, Jaimes A (2015) Tvsum: Summarizing web videos using titles. Inproceedings of the IEEE conference on computer vision and pattern recognition, pp 5179\u2013 5187","key":"3451_CR22"},{"doi-asserted-by":"crossref","unstructured":"Gygli M, Grabner H, Riemenschneider H, Van Gool L (2014) Creating summaries from user videos. In: European conference on computer vision (pp. 505-520). Springer, Cham","key":"3451_CR23","DOI":"10.1007\/978-3-319-10584-0_33"},{"doi-asserted-by":"crossref","unstructured":"Potapov D, Douze M, Harchaoui Z, Schmid C (2014) Category-specific video summarization. In: European conference on computer vision (pp. 540-555). Springer, Cham","key":"3451_CR24","DOI":"10.1007\/978-3-319-10599-4_35"},{"issue":"7","key":"3451_CR25","doi-asserted-by":"publisher","first-page":"1212","DOI":"10.1016\/j.jvcir.2013.08.003","volume":"24","author":"SK Kuanar","year":"2013","unstructured":"Kuanar SK, Panda R, Chowdhury AS (2013) Video key frame extraction through dynamic Delaunay clustering with a structural constraint. J Vis Commun Image Represent 24(7):1212\u2013 1227","journal-title":"J Vis Commun Image Represent"},{"issue":"6","key":"3451_CR26","doi-asserted-by":"publisher","first-page":"1923","DOI":"10.1109\/TCYB.2017.2718579","volume":"48","author":"X Li","year":"2017","unstructured":"Li X, Zhao B, Lu X (2017) Key frame extraction in the summary space. IEEE transactions on cybernetics 48(6):1923\u20131934","journal-title":"IEEE transactions on cybernetics"},{"doi-asserted-by":"crossref","unstructured":"Elhamifar E, Sapiro G, Vidal R (2012) See all by looking at a few: Sparse modeling for finding representative objects. In: 2012 IEEE conference on computer vision and pattern recognition (pp. 1600-1607). IEEE","key":"3451_CR27","DOI":"10.1109\/CVPR.2012.6247852"},{"issue":"7","key":"3451_CR28","doi-asserted-by":"publisher","first-page":"1229","DOI":"10.1109\/TNNLS.2014.2317880","volume":"25","author":"H Zhang","year":"2014","unstructured":"Zhang H, Wang Z, Liu D (2014) A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Transactions on Neural Networks and Learning Systems 25(7):1229\u20131262","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"doi-asserted-by":"crossref","unstructured":"Zhao B, Li X, Lu X (2018) Hsa-rnn: Hierarchical structure-adaptive rnn for video summarization. Inproceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 7405\u20137414","key":"3451_CR29","DOI":"10.1109\/CVPR.2018.00773"},{"unstructured":"Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. arXiv:1706.03762","key":"3451_CR30"},{"doi-asserted-by":"crossref","unstructured":"Chen Y, Guo B, Shen Y, Wang W, Lu W, Suo X (2021) Boundary graph convolutional network for temporal action detection. Image Vis Comput, 104144","key":"3451_CR31","DOI":"10.1016\/j.imavis.2021.104144"},{"doi-asserted-by":"crossref","unstructured":"Lin T, Liu X, Li X, Ding E, Wen S (2019) Bmn: Boundary-matching network for temporal action proposal generation. Inproceedings of the IEEE\/CVF International Conference on Computer Vision, pp 3889\u20133898","key":"3451_CR32","DOI":"10.1109\/ICCV.2019.00399"},{"issue":"1","key":"3451_CR33","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1016\/j.patrec.2010.08.004","volume":"32","author":"SEF De Avila","year":"2011","unstructured":"De Avila SEF, Lopes APB, da Luz Jr A, de Albuquerque Ara\u00fajo A (2011) VSUMM: A mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recogn Lett 32 (1):56\u201368","journal-title":"Pattern Recogn Lett"},{"doi-asserted-by":"crossref","unstructured":"Zhang K, Chao WL, Sha F, Grauman K (2016) Summary transfer: Exemplar-based subset selection for video summarization. Inproceedings of the IEEE conference on computer vision and pattern recognition, pp 1059\u20131067","key":"3451_CR34","DOI":"10.1109\/CVPR.2016.120"},{"doi-asserted-by":"crossref","unstructured":"Lagani\u2019ere R, Bacco R, Hocevar A, Lambert P, Pa\u201d\u0131s G, Ionescu BE (2008) Video summarization from spatio-temporal features. In: ACM TRECVid Video Summarization Workshop, pp 144\u2013 148","key":"3451_CR35","DOI":"10.1145\/1463563.1463590"},{"doi-asserted-by":"crossref","unstructured":"Ma Y, Lu L, Zhang H, Li M (2002) A user attention model for video summarization. In: ACM International Conference on Multimedia (MM), pp 533\u2013542","key":"3451_CR36","DOI":"10.1145\/641007.641116"},{"issue":"1","key":"3451_CR37","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1145\/1198302.1198305","volume":"3","author":"TT Ba","year":"2007","unstructured":"Ba TT, Venkatesh S (2007) Video abstraction: a systematic review and classification. ACM transactions on multimedia computing, communications, and applications 3(1):3","journal-title":"ACM transactions on multimedia computing, communications, and applications"},{"issue":"6","key":"3451_CR38","doi-asserted-by":"publisher","first-page":"1497","DOI":"10.1109\/TMM.2014.2319778","volume":"16","author":"S Lu","year":"2014","unstructured":"Lu S, Wang Z, Mei T, Guan G, Feng DD (2014) A bag-of-importance model with locality-constrained coding based feature learning for video summarization. IEEE Trans. Multimedia 16(6):1497\u20131509","journal-title":"IEEE Trans. Multimedia"},{"doi-asserted-by":"crossref","unstructured":"Luan Q, Song M, Liau CY, Bu J, Liu Z, Sun M-T (2014) Video summarization based on nonnegative linear reconstruction, pp 1\u20136","key":"3451_CR39","DOI":"10.1109\/ICME.2014.6890332"},{"doi-asserted-by":"crossref","unstructured":"Elhamifar E, De Paolis Kaluza MC (2017) Online summarization via submodular and convex optimization. In: Proc, IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 1818\u20131826","key":"3451_CR40","DOI":"10.1109\/CVPR.2017.197"},{"issue":"11","key":"3451_CR41","doi-asserted-by":"publisher","first-page":"2182","DOI":"10.1109\/TPAMI.2015.2511748","volume":"38","author":"E Elhamifar","year":"2016","unstructured":"Elhamifar E, Sapiro G, Sastry SS (2016) Dissimilarity-based sparse subset selection. IEEE Trans. Pattern Anal. Mach. Intell. 38(11):2182\u20132197","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"unstructured":"Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser \u0141, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp. 5998\u20136008. 1, 3, 4, 5, 8, 11, 12, 14, 15, 16, 17","key":"3451_CR42"},{"doi-asserted-by":"crossref","unstructured":"Ott M, Edunov S, Grangier D, Auli M (2018) Scaling neural machine translation. Inproceedings of the Third Conference on Machine Translation:, Research Papers, 1, pp. 1\u20139","key":"3451_CR43","DOI":"10.18653\/v1\/W18-6301"},{"unstructured":"Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pretraining of deep bidirectional transformers for language understanding, arXiv:1810.04805. 1, 2, 4, 12, 14, 15, 17, 20","key":"3451_CR44"},{"unstructured":"Anonymous (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Submitted to International Conference on Learning Representations. under review. 1, 4, 5, 6, 7, 8, 18, 19","key":"3451_CR45"},{"unstructured":"Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object detection with transformers, arXiv:2005.12872. 1, 2, 7, 8, 18","key":"3451_CR46"},{"unstructured":"Zhu X, Su W, Lu L, Li B, Wang X, Dai J (2020) Deformable detr: Deformable transformers for end-to-end object detection, arXiv:2010.04159. 1, 7, 8, 18","key":"3451_CR47"},{"doi-asserted-by":"crossref","unstructured":"Ye L, Rochan M, Liu Z, Wang Y (2019) Cross-modal selfattention network for referring image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10502\u201310511. 1, 7, 9","key":"3451_CR48","DOI":"10.1109\/CVPR.2019.01075"},{"unstructured":"Yang F, Yang H, Fu J, Lu H, Guo B (2020) Learning texture transformer network for image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5791\u2013 5800. 1, 7, 10, 11, 18","key":"3451_CR49"},{"unstructured":"Chen H, Wang Y, Guo T, Xu C, Deng Y, Liu Z, Ma S, Xu C, Xu C, Gao W (2020) Pre-trained image processing transformer, arXiv:2012.00364. 1, 6, 10, 11","key":"3451_CR50"},{"doi-asserted-by":"crossref","unstructured":"Tan H, Bansal M (2019) Lxmert: Learning cross-modality encoder representations from transformers, Inproceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 5103\u20135114. 1, 12, 13, 14, 15","key":"3451_CR51","DOI":"10.18653\/v1\/D19-1514"},{"doi-asserted-by":"crossref","unstructured":"Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proc IEEE Conf. Comput. Vis. Pattern Recognit., pp 1\u20139","key":"3451_CR52","DOI":"10.1109\/CVPR.2015.7298594"},{"doi-asserted-by":"crossref","unstructured":"Tran D, et al. (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489\u20134497","key":"3451_CR53","DOI":"10.1109\/ICCV.2015.510"},{"doi-asserted-by":"crossref","unstructured":"Qiu Z, Yao T, Mei T (2017) Learning spatio-temporal representation with pseudo-3d residual networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5533\u20135541","key":"3451_CR54","DOI":"10.1109\/ICCV.2017.590"},{"doi-asserted-by":"crossref","unstructured":"Chen Y, Guo B, Shen Y, Wang W, Suo X, Zhang Z (2020) Using efficient group pseudo-3d network to learn spatio-temporal features. SIViP, pp 1\u20139","key":"3451_CR55","DOI":"10.1007\/s11760-020-01758-5"},{"unstructured":"Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. In: Advances in neural information processing systems, pp. 568\u2013576","key":"3451_CR56"},{"doi-asserted-by":"crossref","unstructured":"Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933\u20131941","key":"3451_CR57","DOI":"10.1109\/CVPR.2016.213"},{"unstructured":"Hendrycks D, Gimpel K (2016) Gaussian error linear units (gelus). arXiv:1606.08415","key":"3451_CR58"},{"doi-asserted-by":"crossref","unstructured":"Jung Y, Cho D, Kim D, Woo S, Kweon IS (2019) Discriminative feature learning for unsupervised video summarization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp 8537\u20138544","key":"3451_CR59","DOI":"10.1609\/aaai.v33i01.33018537"},{"doi-asserted-by":"crossref","unstructured":"Liu YT, Li YJ, Yang FE, Chen SF, Wang YCF (2019) Learning hierarchical self-attention for video summarization. In: 2019 IEEE International Conference on Image Processing (ICIP) (pp. 3377-3381). IEEE","key":"3451_CR60","DOI":"10.1109\/ICIP.2019.8803639"},{"doi-asserted-by":"crossref","unstructured":"He X, Hua Y, Song T, Zhang Z, Xue Z, Ma R, Guan H (2019) Unsupervised video summarization with attentive conditional generative adversarial networks. In: Proceedings of the 27th ACM International Conference on Multimedia, pp 2296\u2013 2304","key":"3451_CR61","DOI":"10.1145\/3343031.3351056"},{"doi-asserted-by":"crossref","unstructured":"Jung Y, Cho D, Woo S, Kweon IS (2020) Global-and-Local Relative Position Embedding for Unsupervised Video Summarization. In: European Conference on Computer Vision, ECCV 2020. European Conference on Computer Vision","key":"3451_CR62","DOI":"10.1007\/978-3-030-58595-2_11"},{"doi-asserted-by":"crossref","unstructured":"Chen Y, Guo B, Shen Y, Wang W, Lu W, Suo X (2021) Capsule Boundary Network with 3D Convolutional Dynamic Routing for Temporal Action Detection. IEEE Transactions on Circuits and Systems for Video Technology","key":"3451_CR63","DOI":"10.1109\/TCSVT.2021.3104226"},{"key":"3451_CR64","first-page":"2069","volume":"27","author":"B Gong","year":"2014","unstructured":"Gong B, Chao WL, Grauman K, Sha F (2014) Diverse sequential subset selection for supervised video summarization. Advances in neural information processing systems 27:2069\u20132077","journal-title":"Advances in neural information processing systems"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03451-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-022-03451-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-022-03451-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,19]],"date-time":"2022-11-19T10:34:35Z","timestamp":1668854075000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-022-03451-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4,6]]},"references-count":64,"journal-issue":{"issue":"15","published-print":{"date-parts":[[2022,12]]}},"alternative-id":["3451"],"URL":"https:\/\/doi.org\/10.1007\/s10489-022-03451-1","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"type":"print","value":"0924-669X"},{"type":"electronic","value":"1573-7497"}],"subject":[],"published":{"date-parts":[[2022,4,6]]},"assertion":[{"value":"22 February 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 April 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}