{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,14]],"date-time":"2025-04-14T10:43:58Z","timestamp":1744627438736,"version":"3.37.3"},"reference-count":47,"publisher":"Springer Science and Business Media LLC","issue":"9","license":[{"start":{"date-parts":[[2022,1,15]],"date-time":"2022-01-15T00:00:00Z","timestamp":1642204800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,15]],"date-time":"2022-01-15T00:00:00Z","timestamp":1642204800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1007\/s10489-021-03010-0","type":"journal-article","created":{"date-parts":[[2022,1,15]],"date-time":"2022-01-15T00:05:35Z","timestamp":1642205135000},"page":"10692-10705","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":28,"title":["HT-Net: hierarchical context-attention transformer network for medical ct image segmentation"],"prefix":"10.1007","volume":"52","author":[{"given":"Mingjun","family":"Ma","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8711-1851","authenticated-orcid":false,"given":"Haiying","family":"Xia","sequence":"additional","affiliation":[]},{"given":"Yumei","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Haisheng","family":"Li","sequence":"additional","affiliation":[]},{"given":"Shuxiang","family":"Song","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,15]]},"reference":[{"issue":"11","key":"3010_CR1","doi-asserted-by":"publisher","first-page":"2369","DOI":"10.1109\/TMI.2016.2546227","volume":"35","author":"P Liskowski","year":"2016","unstructured":"Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369\u20132380","journal-title":"IEEE Trans Med Imaging"},{"key":"3010_CR2","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1007\/s00521-016-2811-9","volume":"29","author":"M Ben Abdallah","year":"2018","unstructured":"Ben Abdallah M, Azar A, Guedri H, et al. (2018) Noise-estimation-based anisotropic diffusion approach for retinal blood vessel segmentation. Neural Comput Appl 29:159\u2013180","journal-title":"Neural Comput Appl"},{"key":"3010_CR3","doi-asserted-by":"publisher","first-page":"5146","DOI":"10.1007\/s10489-020-01966-z","volume":"51","author":"H Tong","year":"2021","unstructured":"Tong H, Fang Z, Wei Z, et al. (2021) SAT-Net: a side attention network for retinal image segmentation. Appl Intell 51: 5146\u20135156","journal-title":"Appl Intell"},{"issue":"1","key":"3010_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-018-34817-6","volume":"8","author":"CM Deniz","year":"2018","unstructured":"Deniz C M, Xiang S, Hallyburton R S, Welbeck A, Babb J S, Honig S, Cho K, Chang G (2018) Segmentation of the proximal femur from mr images using deep convolutional neural networks. Sci Rep 8(1):1\u201314","journal-title":"Sci Rep"},{"key":"3010_CR5","doi-asserted-by":"crossref","unstructured":"Fan DP, Ji GP, Zhou T, Chen G, Fu H, Shen J, Shao L (2020) Pranet: Parallel reverse attention network for polyp segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 263\u2013273","DOI":"10.1007\/978-3-030-59725-2_26"},{"key":"3010_CR6","doi-asserted-by":"crossref","unstructured":"Zhou Z, Siddiquee M M R, Tajbakhsh N, Liang J (2018) UNEt++: A Nested U-Net Architecture for Medical Image Segmentation. In: 4th Deep Learning in Medical Image Analysis, DLMIA, Workshop, Granada, DLMIA 2018, LNCS 11045, pp 3\u201311","DOI":"10.1007\/978-3-030-00889-5_1"},{"key":"3010_CR7","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1016\/j.media.2018.10.004","volume":"51","author":"M Khened","year":"2019","unstructured":"Khened M, Kollerathu V A, Krishnamurthi G (2019) Fully convolutional multi-scale residual densenets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers. Med Image Anal 51:21\u201345","journal-title":"Med Image Anal"},{"key":"3010_CR8","doi-asserted-by":"publisher","first-page":"2567","DOI":"10.1007\/s11063-020-10372-y","volume":"53","author":"R Pitchai","year":"2020","unstructured":"Pitchai R, Madhu Babu C, Supraja P, et al. (2020) Cerebrum tumor segmentation of high resolution magnetic resonance images using 2D-Convolutional network with skull stripping. Neural Process Lett 53:2567\u20132580","journal-title":"Neural Process Lett"},{"issue":"5","key":"3010_CR9","doi-asserted-by":"publisher","first-page":"1240","DOI":"10.1109\/TMI.2016.2538465","volume":"35","author":"S Pereira","year":"2016","unstructured":"Pereira S, Pinto A, Alves V, Silva C A (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240\u20131251","journal-title":"IEEE Trans Med Imaging"},{"key":"3010_CR10","doi-asserted-by":"publisher","first-page":"2519","DOI":"10.1007\/s11063-020-10326-4","volume":"53","author":"R Pitchai","year":"2020","unstructured":"Pitchai R, Supraja P, Victoria A H, et al. (2020) Brain tumor segmentation using deep learning and fuzzy K-Means clustering for magnetic resonance images. Neural Process Lett 53:2519\u20132532","journal-title":"Neural Process Lett"},{"key":"3010_CR11","doi-asserted-by":"publisher","first-page":"1748","DOI":"10.1007\/s10489-018-1328-6","volume":"49","author":"X Zhao","year":"2019","unstructured":"Zhao X, Ji J, Wang X (2019) Dynamic brain functional parcellation via sliding window and artificial bee colony algorithm. Appl Intell 49:1748\u20131770","journal-title":"Appl Intell"},{"issue":"1","key":"3010_CR12","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1109\/TMI.2016.2606370","volume":"36","author":"A Soliman","year":"2017","unstructured":"Soliman A, et al. (2017) Accurate lungs segmentation on CT chest images by adaptive Appearance-Guided shape modeling. IEEE Trans Med Imaging 36(1):263\u2013276","journal-title":"IEEE Trans Med Imaging"},{"issue":"1","key":"3010_CR13","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1109\/TMI.2015.2474119","volume":"35","author":"J Song","year":"2016","unstructured":"Song J, et al. (2016) Lung lesion extraction using a toboggan based growing automatic segmentation approach. IEEE Trans Med Imaging 35(1):337\u2013353","journal-title":"IEEE Trans Med Imaging"},{"issue":"1","key":"3010_CR14","doi-asserted-by":"publisher","first-page":"134","DOI":"10.1109\/TMI.2018.2857800","volume":"38","author":"J Jiang","year":"2019","unstructured":"Jiang J, et al. (2019) Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images. IEEE Trans Med Imaging 38(1):134\u2013144","journal-title":"IEEE Trans Med Imaging"},{"key":"3010_CR15","doi-asserted-by":"publisher","first-page":"101786","DOI":"10.1016\/j.media.2020.101786","volume":"65","author":"B Zhao","year":"2020","unstructured":"Zhao B, Chen X, Li Z, Yu Z, Yao S, Yan L, Wang Y, Liu Z, Liang C, Han C (2020) Triple U-net: Hematoxylin-aware nuclei segmentation with progressive dense feature aggregation. Med Image Anal 65:101786","journal-title":"Med Image Anal"},{"key":"3010_CR16","doi-asserted-by":"publisher","unstructured":"Wang Y, Ye H, Cao F (2021) A novel multi-discriminator deep network for image segmentation. Appl Intell. https:\/\/doi.org\/10.1007\/s10489-021-02427-x","DOI":"10.1007\/s10489-021-02427-x"},{"issue":"12","key":"3010_CR17","doi-asserted-by":"publisher","first-page":"2663","DOI":"10.1109\/TMI.2018.2845918","volume":"37","author":"X Li","year":"2018","unstructured":"Li X, Chen H, Qi X, Dou Q, Fu C W, Heng P A (2018) H-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumes. IEEE Trans Med Imaging 37(12):2663\u20132674","journal-title":"IEEE Trans Med Imaging"},{"issue":"7639","key":"3010_CR18","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1038\/nature21056","volume":"542","author":"A Esteva","year":"2017","unstructured":"Esteva A, Kuprel B, Novoa R A, Ko J, Swetter S M, Blau H M, et al. (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115\u2013118","journal-title":"Nature"},{"key":"3010_CR19","doi-asserted-by":"crossref","unstructured":"Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp 3431\u20133440","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"3010_CR20","doi-asserted-by":"crossref","unstructured":"Ronneberger O, Fischer P, Brox TN (2015) Convolutional networks for biomedical image segmentation. In: Paper presented at international conference on medical image computing and computer-assisted intervention (ICCV). Springer, pp 234\u2013 241","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"3010_CR21","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"key":"3010_CR22","unstructured":"Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998\u20136008"},{"key":"3010_CR23","unstructured":"Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations, ICLR, arXiv:2010.11929"},{"key":"3010_CR24","unstructured":"Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, J egou H (2020) Training data-efficient image transformers & distillation through attention. arXiv:2012.12877"},{"key":"3010_CR25","doi-asserted-by":"publisher","unstructured":"Wang H, Zhu Y, Green B, Adam H, Yuille A, Chen LC (2020) Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In: ECCV, vol 12349. Springer. https:\/\/doi.org\/10.1007\/978-3-030-58548-8_7","DOI":"10.1007\/978-3-030-58548-8_7"},{"key":"3010_CR26","doi-asserted-by":"crossref","unstructured":"Zheng S, Lu J, Zhao H, Zhu X, Luo Z, Wang Y, Fu Y, Feng J, Xiang T, Torr PH et al (2021) Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR","DOI":"10.1109\/CVPR46437.2021.00681"},{"issue":"3","key":"3010_CR27","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1007\/s11263-018-1140-0","volume":"127","author":"B Zhou","year":"2016","unstructured":"Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A (2016) Semantic understanding of scenes through the ade20k dataset. Int J Comput Vis (IJCV) 127(3):302\u2013321","journal-title":"Int J Comput Vis (IJCV)"},{"issue":"4","key":"3010_CR28","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"L Chen","year":"2018","unstructured":"Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille A L (2018) Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834\u2013848","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"3010_CR29","doi-asserted-by":"crossref","unstructured":"Milletari F, Navab N, Ahmadi SA (2016) V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). IEEE, pp 565\u2013571","DOI":"10.1109\/3DV.2016.79"},{"key":"3010_CR30","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1016\/j.media.2019.01.012","volume":"53","author":"J Schlemper","year":"2019","unstructured":"Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, et al. (2019) Attention gated networks: Learning to leverage salient regions in medical images. Med Image Anal 53:197\u2013207","journal-title":"Med Image Anal"},{"key":"3010_CR31","doi-asserted-by":"crossref","unstructured":"Alom M Z, Yakopcic C, Taha T M, Asari V K (2018) Nuclei Segmentation with Recurrent Residual Convolutional Neural Networks based U-Net (R2U-Net). NAECON 2018 - IEEE National Aerospace and Electronics Conference, pp 228\u2013233","DOI":"10.1109\/NAECON.2018.8556686"},{"key":"3010_CR32","doi-asserted-by":"crossref","unstructured":"Xiao X, Lian S, Luo Z, Li S (2018) Weighted Res-Unet for High-Quality Retina Vessel Segmentation. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME). IEEE, pp 327\u2013331","DOI":"10.1109\/ITME.2018.00080"},{"issue":"2","key":"3010_CR33","doi-asserted-by":"publisher","first-page":"568","DOI":"10.1109\/JBHI.2019.2912935","volume":"24","author":"S Guan","year":"2020","unstructured":"Guan S, Khan A A, Sikdar S, Chitnis P V (2020) Fully dense unet for 2-D sparse photoacoustic tomography artifact removal. IEEE J Biomed Health Inf 24(2):568\u2013576","journal-title":"IEEE J Biomed Health Inf"},{"key":"3010_CR34","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1016\/j.neunet.2019.08.025","volume":"121","author":"N Ibtehaz","year":"2020","unstructured":"Ibtehaz N, Rahman M S (2020) MultiresUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation. Neural Netw 121:74\u201387","journal-title":"Neural Netw"},{"key":"3010_CR35","doi-asserted-by":"crossref","unstructured":"Szegedy C, et al (2015) Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1\u20139","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"3010_CR36","doi-asserted-by":"crossref","unstructured":"He K, Gkioxari G, Dollr P, Girshick R (2017) Mask r-CNN. in IEEE international conference on computer vision (ICCV), Venice, pp 2980\u20132988","DOI":"10.1109\/ICCV.2017.322"},{"issue":"10","key":"3010_CR37","doi-asserted-by":"publisher","first-page":"2281","DOI":"10.1109\/TMI.2019.2903562","volume":"38","author":"Z Gu","year":"2019","unstructured":"Gu Z, Cheng J, Fu H, Zhou K, Hao H, Zhao Y, et al. (2019) CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans Med Imaging 38(10):2281\u20132292","journal-title":"IEEE Trans Med Imaging"},{"key":"3010_CR38","doi-asserted-by":"crossref","unstructured":"Zhang J, Xie Y, Wang Y, Xia Y (2020) Inter-slice Context Residual Learning for 3D Medical Image Segmentation. In: IEEE Transactions on Medical Imaging(Early Access), pp 1\u20131","DOI":"10.1109\/TMI.2020.3034995"},{"key":"3010_CR39","unstructured":"Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT arXiv:2103.05940"},{"key":"3010_CR40","doi-asserted-by":"publisher","unstructured":"Dai Y, Gao Y (2021) TransMed: Transformers Advance Multi-modal Medical Image Classification. Diagnostics. https:\/\/doi.org\/10.3390\/diagnostics11081384","DOI":"10.3390\/diagnostics11081384"},{"key":"3010_CR41","unstructured":"Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Yuille A, Zhou Y (2021) TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv:2102.04306"},{"key":"3010_CR42","doi-asserted-by":"crossref","unstructured":"Valanarasu J M, Oza P, Hacihaliloglu I, Patel V (2021) Medical transformer: Gated Axial-Attention for medical image Segmentation.Medical image computing and computer assisted intervention, MICCAI. arXiv:2102.10662","DOI":"10.1007\/978-3-030-87193-2_4"},{"key":"3010_CR43","unstructured":"Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M (2021) Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation. arXiv:2105.05537"},{"key":"3010_CR44","doi-asserted-by":"publisher","unstructured":"Hu J, Shen L, Albanie S, Sun G, Wu E (2020) Squeeze-and-excitation Networks. IEEE Trans Pattern Anal Mach Intell (TPAMI) 42(8):2011\u20132023. https:\/\/doi.org\/10.1109\/TPAMI.2019.2913372","DOI":"10.1109\/TPAMI.2019.2913372"},{"key":"3010_CR45","unstructured":"Oktay O et al (2018) Attention U-Net: Learning Where to Look for the Pancreas. In: 1st Conference on Medical Imaging with Deep Learning (MIDL). arXiv:1804.03999"},{"key":"3010_CR46","doi-asserted-by":"crossref","unstructured":"Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua T (2017) SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 6298\u20136306","DOI":"10.1109\/CVPR.2017.667"},{"key":"3010_CR47","doi-asserted-by":"crossref","unstructured":"Wang X, Han S, Chen Y, Gao D, Vasconcelos N (2019) Volumetric attention for 3D medical image segmentation and detection. In: Shen D et al (eds) Medical image computing and computer assisted intervention, MICCAI. Springer, Cham, p 11769","DOI":"10.1007\/978-3-030-32226-7_20"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-03010-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-021-03010-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-03010-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,20]],"date-time":"2022-06-20T07:30:03Z","timestamp":1655710203000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-021-03010-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1,15]]},"references-count":47,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2022,7]]}},"alternative-id":["3010"],"URL":"https:\/\/doi.org\/10.1007\/s10489-021-03010-0","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"type":"print","value":"0924-669X"},{"type":"electronic","value":"1573-7497"}],"subject":[],"published":{"date-parts":[[2022,1,15]]},"assertion":[{"value":"12 November 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 January 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}