{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,29]],"date-time":"2024-07-29T19:54:36Z","timestamp":1722282876929},"reference-count":64,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2022,1,31]],"date-time":"2022-01-31T00:00:00Z","timestamp":1643587200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,31]],"date-time":"2022-01-31T00:00:00Z","timestamp":1643587200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1007\/s10489-021-02971-6","type":"journal-article","created":{"date-parts":[[2022,1,31]],"date-time":"2022-01-31T00:03:41Z","timestamp":1643587421000},"page":"12034-12048","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Dual-path Processing Network for High-resolution Salient Object Detection"],"prefix":"10.1007","volume":"52","author":[{"given":"Jun","family":"Wang","sequence":"first","affiliation":[]},{"given":"Qingpeng","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Shangqin","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Xiuli","family":"Chai","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9092-7007","authenticated-orcid":false,"given":"Wanjun","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,31]]},"reference":[{"key":"2971_CR1","doi-asserted-by":"publisher","first-page":"317","DOI":"10.1016\/j.patcog.2015.10.009","volume":"52","author":"ZY Li","year":"2016","unstructured":"Li Z Y, Liu G G, Zhang D, Xu Y (2016) Robust single-object image segmentation based on salient transition region. Pattern Recogn 52:317\u2013331","journal-title":"Pattern Recogn"},{"key":"2971_CR2","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1016\/j.patcog.2018.03.010","volume":"80","author":"H Zhi","year":"2018","unstructured":"Zhi H, Shen J, Hong B (2018) Saliency driven region-edge-based top down level set evolution reveals the asynchronous focus in image segmentation. Pattern Recogn: J Pattern Recogn Soc 80:241\u2013255","journal-title":"Pattern Recogn: J Pattern Recogn Soc"},{"key":"2971_CR3","unstructured":"Hong S, You T, Kwak S, Han B (2015) Online tracking by learning discriminative saliency map with convolutional neural network. Int Conf Mach Learn:597\u2013606"},{"key":"2971_CR4","doi-asserted-by":"crossref","unstructured":"Lai BS, Gong SJ (2016) Saliency guided dictionary learning for weakly-supervised image parsing. Comput Vis Pattern Recogn:3630\u20133639","DOI":"10.1109\/CVPR.2016.395"},{"issue":"4","key":"2971_CR5","first-page":"862","volume":"37","author":"JY Zhu","year":"2012","unstructured":"Zhu J Y, Wu J J, Wei Y C, Chang E, Tu Z W (2012) Unsupervised object class discovery via saliency-guided multiple class learning. Comput Vis Pattern Recogn 37(4):862\u2013875","journal-title":"Comput Vis Pattern Recogn"},{"key":"2971_CR6","doi-asserted-by":"publisher","first-page":"3450","DOI":"10.1007\/s10489-020-01961-4","volume":"51","author":"HB Bi","year":"2020","unstructured":"Bi H B, Lu D, Zhu H H, Yang L N (2020) STA-Net: spatial-temporal attention network for video salient object detection. Appl Intell 51:3450\u20133459","journal-title":"Appl Intell"},{"issue":"6","key":"2971_CR7","doi-asserted-by":"publisher","first-page":"2688","DOI":"10.1109\/TIP.2018.2795740","volume":"27","author":"JB Shen","year":"2018","unstructured":"Shen J B, Peng J T, Shao L (2018) Submodular trajectories for better motion segmentation in videos. IEEE Trans Image Process 27(6):2688\u20132700","journal-title":"IEEE Trans Image Process"},{"issue":"7","key":"2971_CR8","doi-asserted-by":"publisher","first-page":"1531","DOI":"10.1109\/TPAMI.2018.2840724","volume":"41","author":"WG Wang","year":"2018","unstructured":"Wang W G, Shen J B, Ling H B (2018) A deep network solution for attention and aesthetics aware photo ropping. IEEE Trans Pattern Anal Mach Intell 41(7):1531\u20131544","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"3","key":"2971_CR9","doi-asserted-by":"publisher","first-page":"569","DOI":"10.1109\/TPAMI.2014.2345401","volume":"37","author":"MM Cheng","year":"2014","unstructured":"Cheng M M, Mitra N, Huang X L, Torr P H, Hu S M (2014) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569\u2013582","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"4","key":"2971_CR10","doi-asserted-by":"publisher","first-page":"818","DOI":"10.1109\/TPAMI.2016.2562626","volume":"39","author":"HW Peng","year":"2016","unstructured":"Peng H W, Li B, Ling H B, Hu W M, Maybank S J (2016) Salient object detection via structured matrix decomposition. IEEE Trans Pattern Anal Mach Intell 39(4):818\u2013832","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"4","key":"2971_CR11","doi-asserted-by":"publisher","first-page":"473","DOI":"10.1007\/s00371-017-1354-0","volume":"34","author":"Q Zhang","year":"2018","unstructured":"Zhang Q, Lin J J, Li W J, Shi Y J, Cao G G (2018) Salient object detection via compactness and objectness cues. Vis Comput 34(4):473\u2013489","journal-title":"Vis Comput"},{"key":"2971_CR12","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1016\/j.neucom.2017.02.064","volume":"243","author":"Q Zhang","year":"2017","unstructured":"Zhang Q, Lin J J, Tao Y Y, Li W J, Shi Y J (2017) Salient object detection via color and texture cues. Neurocomputing 243:35\u201348","journal-title":"Neurocomputing"},{"key":"2971_CR13","doi-asserted-by":"crossref","unstructured":"Shelhamer E, Long J T, Darrell T (2017) Fully Convolutional Networks for Semantic Segmentation. IEEE Comput Soc:3431\u20133440","DOI":"10.1109\/TPAMI.2016.2572683"},{"key":"2971_CR14","doi-asserted-by":"crossref","unstructured":"Fan DP, Lin Z, Ji GP, Zhang DG, Cheng MM (2020) Taking a deeper look at co-salient object detection. IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 862\u2013875","DOI":"10.1109\/CVPR42600.2020.00299"},{"key":"2971_CR15","doi-asserted-by":"crossref","unstructured":"Liu J J, Hou Q B, Cheng M M, Feng J S, Jiang J J (2019) A simple pooling-based design for real-time salient object detection. Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp 3917\u20133926","DOI":"10.1109\/CVPR.2019.00404"},{"key":"2971_CR16","doi-asserted-by":"publisher","unstructured":"Li J X, Pan Z F, Liu QS, Wang ZY (2020) Stacked u-shape network with channel-wise attention for salient object detection. IEEE Transactions on Multimedia. https:\/\/doi.org\/10.1109\/TMM.2020.2997192","DOI":"10.1109\/TMM.2020.2997192"},{"key":"2971_CR17","doi-asserted-by":"crossref","unstructured":"Zhang P P, Wang D, Lu H C, Wang H Y, Ruan X (2017) Amulet: Aggregating multi-level convolutional features for salient object detection. Proceedings of the IEEE International Conference on Computer Vision, pp 202\u2013211","DOI":"10.1109\/ICCV.2017.31"},{"key":"2971_CR18","doi-asserted-by":"crossref","unstructured":"Hou QB, Cheng MM, Hu XW, Borji A, Torr P (2017) Deeply supervised salient object detection with short connections. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3203\u20133212","DOI":"10.1109\/CVPR.2017.563"},{"key":"2971_CR19","doi-asserted-by":"crossref","unstructured":"Luo ZM, Mishra A, Achkar A, Eichel J, Marc P (2017) Non-local deep features for salient object detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 6609\u20136617","DOI":"10.1109\/CVPR.2017.698"},{"key":"2971_CR20","unstructured":"Poudel R P, Liwicki S, Cipolla R (2019) Fast-scnn: fast semantic segmentation network. arXiv:1902.04502"},{"key":"2971_CR21","doi-asserted-by":"crossref","unstructured":"Zhao HS, Qi XJ, Shen XY, Shi JP, Jia JY (2018) ICNet for Real-Time Semantic Segmentation on High-Resolution Images. 2018,the European conference on computer vision (ECCV), pp 405\u2013420","DOI":"10.1007\/978-3-030-01219-9_25"},{"key":"2971_CR22","doi-asserted-by":"crossref","unstructured":"Lin G S, Milan A, Shen C H, Reid I (2017) Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1925\u20131934","DOI":"10.1109\/CVPR.2017.549"},{"key":"2971_CR23","doi-asserted-by":"crossref","unstructured":"Wang W G, Lai Q X, Fu H Z, Shen J B, Ling H B (2021) Ruigang Salient object detection in the deep learning era: An in-depth survey. IEEE Trans Pattern Anal Mach Intell:220\u2013232","DOI":"10.1109\/TPAMI.2019.2924417"},{"key":"2971_CR24","unstructured":"Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556"},{"key":"2971_CR25","doi-asserted-by":"crossref","unstructured":"He K M, Zhang X Y, Ren S Q, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Conf Comput Vis Pattern Recogn:770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"key":"2971_CR26","doi-asserted-by":"crossref","unstructured":"Huang G, Liu Z, Maaten L V, Weinberger K Q (2017) Densely connected convolutional networks. Proc IEEE Conf Comput Vis Pattern Recogn:4700\u20134708","DOI":"10.1109\/CVPR.2017.243"},{"key":"2971_CR27","doi-asserted-by":"crossref","unstructured":"Ronneberger O, Fischer P, Thomas B (2015) U-net:Convolutional networks for biomedical image segmentation. Int Conf Med Image Comput Comput-Assisted Intervent:234\u2013241","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"2971_CR28","doi-asserted-by":"crossref","unstructured":"Zhao J, Liu JJ, Fan DP, Cao Y (2019) EGNet: Edge Guidance Network for Salient Object Detection. 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), pp 8779\u20138788","DOI":"10.1109\/ICCV.2019.00887"},{"issue":"1","key":"2971_CR29","doi-asserted-by":"publisher","first-page":"2945","DOI":"10.1007\/s10489-020-01700-9","volume":"50","author":"FW Jia","year":"2020","unstructured":"Jia F W, Guan J, Qi S H, Li H L (2020) A mix-supervised unified framework for salient object detection. Appl Intell 50(1):2945\u20132958","journal-title":"Appl Intell"},{"key":"2971_CR30","doi-asserted-by":"crossref","unstructured":"Yu C H, Wang J G, Peng C, Gao C X, Yu G, Sang N (2018) Bisenet: Bilateral segmentation network for real-time semantic segmentation. Proc Eur Conf Comput Vis (ECCV):325\u2013341","DOI":"10.1007\/978-3-030-01261-8_20"},{"key":"2971_CR31","doi-asserted-by":"crossref","unstructured":"Zhou HJ, Xie XH, Lai JH, Chen ZX, Yang LX (2020) Interactive two-stream decoder for accurate and fast saliency detection. 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 9141\u20139150","DOI":"10.1109\/CVPR42600.2020.00916"},{"key":"2971_CR32","doi-asserted-by":"crossref","unstructured":"Zhang XN, Wang TT, Qi JQ, Lu HC, Wang G (2018) Progressive attention guided recurrent network for salient object detection. 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp 9141\u20139150","DOI":"10.1109\/CVPR.2018.00081"},{"key":"2971_CR33","unstructured":"Paszke A, Chaurasia A, Kim S, et al. (2016) Enet: A deep neural network architecture for real-time semantic segmentation. arXiv:1606.02147"},{"key":"2971_CR34","doi-asserted-by":"crossref","unstructured":"Li H, Xiong P, Fan H, et al. (2019) Dfanet: Deep feature aggregation for real-time semantic segmentation. Proc IEEE\/CVF Conf Comput Vis Pattern Recogn:9522\u20139531","DOI":"10.1109\/CVPR.2019.00975"},{"key":"2971_CR35","doi-asserted-by":"crossref","unstructured":"Mehta S, Rastegari M, Caspi A, et al. (2018) Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. Proceedings Eur Conf Comput Vis (ECCV):552\u2013568","DOI":"10.1007\/978-3-030-01249-6_34"},{"key":"2971_CR36","doi-asserted-by":"crossref","unstructured":"Romera E, Alvarez J M, Bergasa L M et al (2017) Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. Proc IEEE Trans Intell Transp Syst 19(1): 263\u2013272","DOI":"10.1109\/TITS.2017.2750080"},{"key":"2971_CR37","unstructured":"Wang H R, Fan Y, Wang Z X, Jiao L C (2018) Parameter-free spatial attention network for person re-identification. arXiv:1811.12150"},{"key":"2971_CR38","doi-asserted-by":"crossref","unstructured":"Zhang Y L, Li K P, Li K, Wang L C, Zhong B (2018) Image super-resolution using very deep residual channel attention networks. Proc Eur Conf Comput Vis (ECCV):286\u2013301","DOI":"10.1007\/978-3-030-01234-2_18"},{"key":"2971_CR39","doi-asserted-by":"crossref","unstructured":"Chu X, Yang W, Wan L, Ma C (2017) Multi-context attention for human pose estimation. Proc IEEE Conf Comput Vis Pattern Recognit:1831\u20131840","DOI":"10.1109\/CVPR.2017.601"},{"key":"2971_CR40","doi-asserted-by":"publisher","first-page":"170","DOI":"10.1016\/j.neucom.2019.12.109","volume":"389","author":"TP Li","year":"2020","unstructured":"Li T P, Song H H, Zhang Z H, Liu Q S (2020) Recurrent reverse attention guided residual learning for saliency object detection. Neurocomputing 389:170\u2013178","journal-title":"Neurocomputing"},{"key":"2971_CR41","unstructured":"Howard A G, Zhu M L, Chen B, Dmitry K, Wang W J (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861"},{"key":"2971_CR42","unstructured":"Fisher Y, Vladlen K (2015) Multi-scale context aggregation by dilated convolutions. arXiv:1511.07122"},{"key":"2971_CR43","doi-asserted-by":"crossref","unstructured":"Chen L C, Zhu Y K, George P, Florian S, Hartwig A (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. Proc Eur Conf Comput Vis (ECCV):801\u2013818","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"2971_CR44","doi-asserted-by":"crossref","unstructured":"Zhao HS, Shi JP, Qi XJ, Wang XJ, Jia XJ (2017) Pyramid scene parsing network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2881\u20132890","DOI":"10.1109\/CVPR.2017.660"},{"issue":"9","key":"2971_CR45","doi-asserted-by":"publisher","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","volume":"37","author":"KM He","year":"2014","unstructured":"He K M, Zhang X Y, Ren S Q, Sun J (2014) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904\u201316","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"2971_CR46","doi-asserted-by":"crossref","unstructured":"Lin D, Ji Y F, Dani L, Daniel C O, Huang H (2018) Multi-scale context intertwining for semantic segmentation. Proc Eur Conf Comput Vis (ECCV):603\u2013619","DOI":"10.1007\/978-3-030-01219-9_37"},{"issue":"5","key":"2971_CR47","doi-asserted-by":"publisher","first-page":"872","DOI":"10.3390\/rs12050872","volume":"12","author":"RH Shang","year":"2020","unstructured":"Shang R H, Zhang J Y, Jiao L C, Li Y Y, Marturi N, Stolkin R (2020) Multi-scale adaptive feature fusion network for semantic segmentation in remote sensing images. Remote Sens 12(5): 872","journal-title":"Remote Sens"},{"key":"2971_CR48","unstructured":"Mark S, Howard A, Zhu M L, Andrey Z, Liang C C (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. Proc IEEE Conf Comput Vis Pattern Recogn:4510\u20134520"},{"key":"2971_CR49","unstructured":"Christian S, Liu W, Jia Y Q, Pierre S, Scott R, Dragomir A (2015) Going deeper with convolutions. Proc IEEE Conf Comput Vis Pattern Recogn:1\u20139"},{"key":"2971_CR50","unstructured":"Sergey I, Christian S (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. Int Conf Mach Learn:448\u2013456"},{"key":"2971_CR51","doi-asserted-by":"crossref","unstructured":"Zeng Y, Zhang P P, Zhang J M, Lin Zhe, Lu H C (2019) Towards high-resolution salient object detection. Proc IEEE\/CVF Int Conf Comput Vis:7234\u20137243","DOI":"10.1109\/ICCV.2019.00733"},{"key":"2971_CR52","doi-asserted-by":"crossref","unstructured":"Perazzi F, Pont-Tuset J, Mcwilliams B (2016) A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","DOI":"10.1109\/CVPR.2016.85"},{"key":"2971_CR53","doi-asserted-by":"crossref","unstructured":"Yan Q, Xu L, Shi J P, Jia J Y (2013) Hierarchical saliency detection. 2013 IEEE Conference Computer Vision and Pattern Recognition (CVPR), pp 1155\u20131162","DOI":"10.1109\/CVPR.2013.153"},{"key":"2971_CR54","doi-asserted-by":"crossref","unstructured":"Wolfgang E, Peter K (2015) Does luminance-contrast contribute to a saliency map for overt visual attention? Eur J Neurosci 17(5):1089\u20131097","DOI":"10.1046\/j.1460-9568.2003.02508.x"},{"key":"2971_CR55","unstructured":"Li G B, Yu Y Z (2015) Visual saliency based on multiscale deep features. Proc IEEE Conf Comput Vis Pattern Recogn:5455\u20135463"},{"key":"2971_CR56","doi-asserted-by":"crossref","unstructured":"Wang L J, Lu H C, Wang Y F, Feng M, Ruan X (2017) Learning to detect salient objects with image-level supervision. IEEE Conf Comput Vis Pattern Recogn:136\u2013145","DOI":"10.1109\/CVPR.2017.404"},{"key":"2971_CR57","doi-asserted-by":"crossref","unstructured":"Fan D P, Cheng M M, Liu Y, Li T, Ali B (2017) Structure-measure: A new way to evaluate foreground maps. Proc IEEE Int Conf Comput Vis:4548\u20134557","DOI":"10.1109\/ICCV.2017.487"},{"issue":"20","key":"2971_CR58","first-page":"361","volume":"6","author":"Y Zhang","year":"2012","unstructured":"Zhang Y, Lan Y H, Ren H Z, Li M (2012) Robust frequency-tuned salient region detection. Int J Digit Content Technol Appl 6(20):361\u2013369","journal-title":"Int J Digit Content Technol Appl"},{"key":"2971_CR59","first-page":"249","volume":"9","author":"G Xavier","year":"2010","unstructured":"Xavier G, Yoshua B (2010) Understanding the difficulty of training deep feedforward neural networks. J Mach Learn Res 9:249\u2013256","journal-title":"J Mach Learn Res"},{"key":"2971_CR60","unstructured":"Diederik K, Jimmy B (2014) Adam:A method for stochastic optimization. arXiv:1412.6980"},{"key":"2971_CR61","doi-asserted-by":"crossref","unstructured":"Chen S H, Tan X H, Wang B, Hu X L (2018) Reverse attention for salient object detection. Proceedings of the European Conference on Computer Vision (ECCV), pp 234\u2013250","DOI":"10.1007\/978-3-030-01240-3_15"},{"key":"2971_CR62","doi-asserted-by":"crossref","unstructured":"Deng ZJ, Hu XW, Zhu L, Xu XM, Pheng AH (2018) R3 net: Recurrent residual refinement network for saliency detection. International Joint Conference on Artificial Intelligence (IJCAI), pp 684\u2013690","DOI":"10.24963\/ijcai.2018\/95"},{"key":"2971_CR63","doi-asserted-by":"crossref","unstructured":"Liu N, Han JW, Yang MH (2018) Picanet: Learning pixel-wise contextual attention for saliency detection. 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition(CVPR), pp 684\u2013690","DOI":"10.1109\/CVPR.2018.00326"},{"key":"2971_CR64","doi-asserted-by":"crossref","unstructured":"Wang B, Chen Q, Zhou M, Zhang Z Q, Jin X G, Gai K (2020) Progressive feature polishing network for salient object detection. Proc AAAI Conf Artif Intell:12128\u201312135","DOI":"10.1609\/aaai.v34i07.6892"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02971-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-021-02971-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02971-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,28]],"date-time":"2022-06-28T05:19:48Z","timestamp":1656393588000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-021-02971-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1,31]]},"references-count":64,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2022,8]]}},"alternative-id":["2971"],"URL":"https:\/\/doi.org\/10.1007\/s10489-021-02971-6","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,1,31]]},"assertion":[{"value":"1 November 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"31 January 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interests"}}]}}