{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,13]],"date-time":"2024-06-13T02:18:35Z","timestamp":1718245115867},"reference-count":64,"publisher":"Springer Science and Business Media LLC","issue":"8","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2022,6]]},"abstract":"Abstract<\/jats:title>Many simulation workflows require to prepare the data for the simulation manually. This is time consuming and leads to a massive bottleneck when a large number of numerical simulations is requested. This bottleneck can be overcome by an automated data processing pipeline. Such a novel pipeline is developed for a medical use case from rhinology, where computer tomography recordings are used as input and flow simulation data define the results. Convolutional neural networks are applied to segment the upper airways and to detect and prepare the in- and outflow regions for accurate boundary condition prescription in the simulation. The automated process is tested on three cases which have not been used to train the networks. The accuracy of the pipeline is evaluated by comparing the network-generated output surfaces to those obtained from a semi-automated procedure performed by a medical professional. Except for minor deviations at interfaces between ethmoidal sinuses, the network-generated surface is sufficiently accurate. To further analyze the accuracy of the automated pipeline, flow simulations are conducted with a thermal lattice-Boltzmann method for both cases on a high-performace computing system. The comparison of the results of the respiratory flow simulations yield averaged errors of less than 1%<\/jats:italic> for the pressure loss between the in- and outlets, and for the outlet temperature. Thus, the pipeline is shown to work accurately and the geometrical deviations at the ethmoidal sinuses to be negligible.<\/jats:p>","DOI":"10.1007\/s10489-021-02808-2","type":"journal-article","created":{"date-parts":[[2022,1,5]],"date-time":"2022-01-05T06:02:24Z","timestamp":1641362544000},"page":"9080-9100","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["A machine-learning-based method for automatizing lattice-Boltzmann simulations of respiratory flows"],"prefix":"10.1007","volume":"52","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3917-8407","authenticated-orcid":false,"given":"Mario","family":"R\u00fcttgers","sequence":"first","affiliation":[]},{"given":"Moritz","family":"Waldmann","sequence":"additional","affiliation":[]},{"given":"Wolfgang","family":"Schr\u00f6der","sequence":"additional","affiliation":[]},{"given":"Andreas","family":"Lintermann","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,1,1]]},"reference":[{"key":"2808_CR1","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1016\/j.jweia.2019.01.003","volume":"186","author":"M R\u00fcttgers","year":"2019","unstructured":"R\u00fcttgers M, Park J, You D (2019) Large-eddy simulation of turbulent flow over the drivaer fastback vehicle model. J Wind Eng Ind Aerodyn 186:123\u2013138. https:\/\/doi.org\/10.1016\/j.jweia.2019.01.003","journal-title":"J Wind Eng Ind Aerodyn"},{"issue":"C","key":"2808_CR2","doi-asserted-by":"publisher","first-page":"292","DOI":"10.1016\/j.combustflame.2016.08.001","volume":"175","author":"S Schlimpert","year":"2017","unstructured":"Schlimpert S, Koh SR, Pausch K, Meinke M, Schr\u00f6der W (2017) Analysis of combustion noise of a turbulent premixed slot jet flame. Combustion and Flame 175(C):292\u2013306. https:\/\/doi.org\/10.1016\/j.combustflame.2016.08.001","journal-title":"Combustion and Flame"},{"key":"2808_CR3","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1016\/j.conbuildmat.2019.02.004","volume":"205","author":"X Yang","year":"2019","unstructured":"Yang X, Kuru E, Gingras M, Iremonger S (2019) Ct-cfd integrated investigation into porosity and permeability of neat early-age well cement at downhole condition. Constr Build Mater 205:73\u201386. https:\/\/doi.org\/10.1016\/j.conbuildmat.2019.02.004","journal-title":"Constr Build Mater"},{"issue":"1","key":"2808_CR4","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1007\/s10494-017-9876-0","volume":"102","author":"A Lintermann","year":"2019","unstructured":"Lintermann A, Schr\u00f6der W (2019) A hierarchical numerical journey through the nasal cavity: from nose-like models to real anatomies. Flow Turbu Combust 102(1):89\u2013116. https:\/\/doi.org\/10.1007\/s10494-017-9876-0","journal-title":"Flow Turbu Combust"},{"key":"2808_CR5","doi-asserted-by":"publisher","first-page":"185","DOI":"10.4193\/Rhino11.218","volume":"50","author":"N Toyserkani","year":"2012","unstructured":"Toyserkani N, Frisch T (2012) Are too many septal deviations operated on? A retrospective patient\u2018s satisfaction questionnaire with 11 years follow-up. Rhinology 50:185\u2013190. https:\/\/doi.org\/10.4193\/Rhino11.218","journal-title":"Rhinology"},{"key":"2808_CR6","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1001\/jamafacial.2017.1554","volume":"20","author":"D Vanhille","year":"2018","unstructured":"Vanhille D, Garcia GJM, Asan O (2018) Virtual surgery for the nasal airway: A preliminary report on decision support and technology acceptance. J Amer Med Assoc Facial Plastic Surg 20:63\u201369. https:\/\/doi.org\/10.1001\/jamafacial.2017.1554","journal-title":"J Amer Med Assoc Facial Plastic Surg"},{"key":"2808_CR7","doi-asserted-by":"publisher","unstructured":"Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 3431\u20133440. https:\/\/doi.org\/10.1109\/TPAMI.2016.2572683","DOI":"10.1109\/TPAMI.2016.2572683"},{"key":"2808_CR8","doi-asserted-by":"publisher","unstructured":"Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer-assisted intervention \u2013 MICCAI 2015. MICCAI 2015. Lecture notes in computer science. https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28, vol 9351. Springer, Cham","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"2808_CR9","unstructured":"Mao X, Shen C, Yang Y-B (2016) Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Lee D, Sugiyama M, Luxburg U, Guyon I, Garnett R (eds) Advances in neural information processing systems, vol 29. Curran Associates, Inc."},{"key":"2808_CR10","doi-asserted-by":"publisher","unstructured":"Zhou Z, Rahman Siddiquee M M, Tajbakhsh N, Liang J (2019) Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging. https:\/\/doi.org\/10.1109\/TMI.2019.2959609","DOI":"10.1109\/TMI.2019.2959609"},{"key":"2808_CR11","doi-asserted-by":"publisher","first-page":"422","DOI":"10.1016\/j.promfg.2020.01.386","volume":"39","author":"H Lu","year":"2019","unstructured":"Lu H, Wang H, Zhang Q, Yoon S W, Won D (2019) A 3d convolutional neural network for volumetric image semantic segmentation. Procedia Manuf 39:422\u2013428. https:\/\/doi.org\/10.1016\/j.promfg.2020.01.386, https:\/\/www.sciencedirect.com\/science\/article\/pii\/S2351978920304571, 25th international conference on production research manufacturing innovation: cyber physical manufacturing August 9-14, 2019 \u2014 Chicago, Illinois (USA)","journal-title":"Procedia Manuf"},{"issue":"11","key":"2808_CR12","doi-asserted-by":"publisher","first-page":"1833","DOI":"10.1016\/j.compbiomed.2013.09.003","volume":"43","author":"A Lintermann","year":"2013","unstructured":"Lintermann A, Meinke M, Schr\u00f6der W (2013) Fluid mechanics based classification of the respiratory efficiency of several nasal cavities. Comput Biol Med 43(11):1833\u20131852. https:\/\/doi.org\/10.1016\/j.compbiomed.2013.09.003","journal-title":"Comput Biol Med"},{"key":"2808_CR13","doi-asserted-by":"publisher","unstructured":"Lintermann A, Meinke M, Schr\u00f6der W (2020) Zonal Flow Solver (ZFS): a highly efficient multi-physics simulation framework. Int J Comput Fluid Dyn:1\u201328. https:\/\/doi.org\/10.1080\/10618562.2020.1742328","DOI":"10.1080\/10618562.2020.1742328"},{"key":"2808_CR14","doi-asserted-by":"publisher","unstructured":"Waldmann M, Lintermann A, Choi Y J, Schr\u00f6der W (2020) Analysis of the effects of MARME treatment on respiratory flow Using the Lattice-Boltzmann Method. Results Numer Exper Fluid Mech XII:853\u2013863. https:\/\/doi.org\/10.1007\/978-3-030-25253-3_80","DOI":"10.1007\/978-3-030-25253-3_80"},{"key":"2808_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2019\/6240320","volume":"2019","author":"Y Zhang","year":"2019","unstructured":"Zhang Y, Zhou X, Lou M, Gong M, Zhang J, Ma R, Zhang L, Huang F, Sun B, Zhu K, Tong Z, Zheng G (2019) Computational fluid dynamics (cfd) investigation of aerodynamic characters inside nasal cavity towards surgical treatments for secondary atrophic rhinitis. Math Probl Eng 2019:1\u20138. https:\/\/doi.org\/10.1155\/2019\/6240320","journal-title":"Math Probl Eng"},{"key":"2808_CR16","doi-asserted-by":"publisher","unstructured":"Calmet H, Gambaruto A, Bates A, Vzquez M, Houzeaux G, Doorly D (2015) Large-scale cfd simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput Biol Med 69. https:\/\/doi.org\/10.1016\/j.compbiomed.2015.12.003","DOI":"10.1016\/j.compbiomed.2015.12.003"},{"issue":"3","key":"2808_CR17","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1175\/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2","volume":"91","author":"J Smagorinsky","year":"1963","unstructured":"Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99\u2013164. https:\/\/doi.org\/10.1175\/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2","journal-title":"Mon Weather Rev"},{"issue":"7","key":"2808_CR18","doi-asserted-by":"publisher","first-page":"1760","DOI":"10.1063\/1.857955","volume":"3","author":"M Germano","year":"1991","unstructured":"Germano M, Piomelli U, Moin P, Cabot W H (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A: Fluid Dyn 3(7):1760\u20131765. https:\/\/doi.org\/10.1063\/1.857955","journal-title":"Phys Fluids A: Fluid Dyn"},{"key":"2808_CR19","doi-asserted-by":"publisher","unstructured":"Burgos Olmos M, Rojas E, Singh N, Esteban-Ortega F (2018) Digbody\u00ae : a new 3d modeling tool for nasal virtual surgery. Comput Biol Med 98. https:\/\/doi.org\/10.1016\/j.compbiomed.2018.05.016","DOI":"10.1016\/j.compbiomed.2018.05.016"},{"issue":"8","key":"2808_CR20","doi-asserted-by":"publisher","first-page":"3121","DOI":"10.1007\/s00405-017-4611-y","volume":"274","author":"MA Burgos","year":"2017","unstructured":"Burgos M A, Sanmiguel-Rojas E, del Pino C, Sevilla-Garc\u00eda M A, Esteban-Ortega F (2017) New CFD tools to evaluate nasal airflow. Eur Arch Otorhinolaryngol 274(8):3121\u20133128. https:\/\/doi.org\/10.1007\/s00405-017-4611-y","journal-title":"Eur Arch Otorhinolaryngol"},{"key":"2808_CR21","doi-asserted-by":"publisher","first-page":"103505","DOI":"10.1016\/j.compbiomed.2019.103505","volume":"115","author":"R Huang","year":"2019","unstructured":"Huang R, Nedanoski A, Fletcher D F, Singh N, Schmid J, Young P M, Stow N, Bi L, Traini D, Wong E, Phillips C L, Grunstein R R, Kim J (2019) An automated segmentation framework for nasal computational fluid dynamics analysis in computed tomography. Comput Biol Med 115:103505. https:\/\/doi.org\/10.1016\/j.compbiomed.2019.103505","journal-title":"Comput Biol Med"},{"issue":"1","key":"2808_CR22","doi-asserted-by":"publisher","first-page":"33","DOI":"10.2514\/3.51043","volume":"20","author":"K-Y Chien","year":"1982","unstructured":"Chien K-Y (1982) Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. Amer Inst Aeron Astron J 20(1):33\u201338. https:\/\/doi.org\/10.2514\/3.51043","journal-title":"Amer Inst Aeron Astron J"},{"key":"2808_CR23","doi-asserted-by":"publisher","unstructured":"Eitel G, Freitas R K, Lintermann A, Meinke M, Schr\u00f6der W (2010) Numerical simulation of nasal cavity flow based on a lattice-Boltzmann method. In: Dillmann A, Heller G, Klaas M, Kreplin H-P, Nitsche W, Schr\u00f6der W (eds) Results in numerical and experimental fluid mechanics VII. Notes on numerical fluid mechanics and multidisciplinary design. https:\/\/doi.org\/10.1007\/978-3-642-14243-7_63, vol 112. Springer, Berlin, pp 513\u2013520","DOI":"10.1007\/978-3-642-14243-7_63"},{"issue":"4","key":"2808_CR24","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1145\/37402.37422","volume":"21","author":"WE Lorensen","year":"1987","unstructured":"Lorensen W E, Cline H E (1987) Marching cubes: a high resolution 3d surface construction algorithm. SIGGRAPH Comput Graph 21(4):163\u2013169. https:\/\/doi.org\/10.1145\/37402.37422","journal-title":"SIGGRAPH Comput Graph"},{"issue":"3","key":"2808_CR25","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1080\/19942060.2009.11015274","volume":"3","author":"K Inthavong","year":"2009","unstructured":"Inthavong K, Wen J, Tu J, Tian Z (2009) From ct scans to cfd modelling - fluid and heat transfer in a realistic human nasal cavity. Eng Appl Comput Fluid Mech 3 (3):321\u2013335. https:\/\/doi.org\/10.1080\/19942060.2009.11015274","journal-title":"Eng Appl Comput Fluid Mech"},{"key":"2808_CR26","doi-asserted-by":"publisher","unstructured":"Koch W, Lehner M, Benda O, Ortiz R, Koch G (2021) Clinical cfd applications 2. In: Clinical and biomedical engineering in the human nose. https:\/\/doi.org\/10.1007\/978-981-15-6716-2.10. Springer, pp 242\u2013249","DOI":"10.1007\/978-981-15-6716-2.10"},{"key":"2808_CR27","volume-title":"Turbulence Modeling for CFD","author":"DC Wilcox","year":"1998","unstructured":"Wilcox D C (1998) Turbulence Modeling for CFD, 2nd edn. DCW Industries, La Canada","edition":"2nd edn."},{"key":"2808_CR28","unstructured":"Grotjans H, Menter FR (1998) Wall functions for industrial applications. In: Papailiou KD (ed) Computational fluid dynamics \u201998, ECCOMAS. Wiley, pp 1112\u20131117"},{"issue":"6","key":"2808_CR29","doi-asserted-by":"publisher","first-page":"1081","DOI":"10.1016\/j.jbiomech.2009.12.008","volume":"43","author":"I H\u00f6rschler","year":"2010","unstructured":"H\u00f6rschler I, Schr\u00f6der W, Meinke M (2010) On the assumption of steadiness of nasal cavity flow. J Biomech 43(6):1081\u20135. https:\/\/doi.org\/10.1016\/j.jbiomech.2009.12.008","journal-title":"J Biomech"},{"key":"2808_CR30","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1016\/j.jbiomech.2017.08.031","volume":"64","author":"C Li","year":"2017","unstructured":"Li C, Jiang J, Dong H, Zhao K (2017) Computational modeling and validation of human nasal airflow under various breathing conditions. J Biomech 64:59\u201368. https:\/\/doi.org\/10.1016\/j.jbiomech.2017.08.031","journal-title":"J Biomech"},{"key":"2808_CR31","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1016\/j.cma.2014.04.009","volume":"277","author":"A Lintermann","year":"2014","unstructured":"Lintermann A, Schlimpert S, Grimmen JH, G\u00fcnther C, Meinke M, Schr\u00f6der W (2014) Massively parallel grid generation on HPC systems. Comput Methods Appl Mech Eng 277:131\u2013153. https:\/\/doi.org\/10.1016\/j.cma.2014.04.009","journal-title":"Comput Methods Appl Mech Eng"},{"issue":"4","key":"2808_CR32","doi-asserted-by":"publisher","first-page":"196","DOI":"10.4236\/ojmi.2017.74019","volume":"07","author":"N Kabuliak","year":"2017","unstructured":"Kabuliak N, Nejati A, Loch C, Schwass D, Cater J, Jermy M (2017) Strategies for segmenting the upper airway in cone-beam computed tomography (CBCT) Data. Open J Med Imaging 07(4):196\u2013219. https:\/\/doi.org\/10.4236\/ojmi.2017.74019","journal-title":"Open J Med Imaging"},{"issue":"7","key":"2808_CR33","doi-asserted-by":"publisher","first-page":"629","DOI":"10.1109\/34.56205","volume":"12","author":"P Perona","year":"1990","unstructured":"Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629\u2013639. https:\/\/doi.org\/10.1109\/34.56205","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"2808_CR34","doi-asserted-by":"publisher","first-page":"176","DOI":"10.1016\/j.media.2016.06.035","volume":"33","author":"T Kapur","year":"2016","unstructured":"Kapur T, Pieper S, Fedorov A, Fillion-Robin J-C, Halle M, O\u2019Donnell L, Lasso A, Ungi T, Pinter C, Finet J, Pujol S, Jagadeesan J, Tokuda J, Norton I, Estepar R S J, Gering D, Aerts H JWL, Jakab M, Hata N, Ibanez L, Blezek D, Miller J, Aylward S, Grimson W E L, Fichtinger G, Wells W M, Lorensen W E, Schroeder W, Kikinis R (2016) Increasing the impact of medical image computing using community-based open-access hackathons: the na-mic and 3d slicer experience. Med Image Anal 33:176\u2013180. https:\/\/doi.org\/10.1016\/j.media.2016.06.035, 20th anniversary of the Medical Image Analysis journal (MedIA)","journal-title":"Med Image Anal"},{"key":"2808_CR35","unstructured":"Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Bach F, Blei D (eds) Proceedings of the 32nd international conference on machine Learning. Proceedings of Machine Learning Research, vol 37. PMLR, Lille, pp 448\u2013456"},{"issue":"56","key":"2808_CR36","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res 15(56):1929\u20131958","journal-title":"J Mach Learn Res"},{"key":"2808_CR37","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the 2015 IEEE international conference on computer vision (ICCV). ICCV \u201915. IEEE Computer Society, USA, pp 1026\u20131034","DOI":"10.1109\/ICCV.2015.123"},{"key":"2808_CR38","unstructured":"Kingma D P, Ba J (2015) Adam: A method for stochastic optimization. CoRR"},{"key":"2808_CR39","doi-asserted-by":"publisher","unstructured":"Taubin G, Zhang T, Golub G (1996) Optimal surface smoothing as filter design. https:\/\/doi.org\/10.1007\/BFb0015544","DOI":"10.1007\/BFb0015544"},{"key":"2808_CR40","doi-asserted-by":"publisher","first-page":"1097","DOI":"10.1007\/s11517-008-0420-1","volume":"46","author":"L Antiga","year":"2008","unstructured":"Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman D (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097\u20131112. https:\/\/doi.org\/10.1007\/s11517-008-0420-1","journal-title":"Med Biol Eng Comput"},{"key":"2808_CR41","doi-asserted-by":"publisher","first-page":"1393","DOI":"10.1007\/s00371-010-0416-3","volume":"26","author":"M Attene","year":"2010","unstructured":"Attene M (2010) A lightweight approach to repairing digitized polygon meshes. Vis Comput 26:1393\u20131406. https:\/\/doi.org\/10.1007\/s00371-010-0416-3","journal-title":"Vis Comput"},{"issue":"1","key":"2808_CR42","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1002\/nme.1620310102","volume":"31","author":"J Bonet","year":"1991","unstructured":"Bonet J, Peraire J (1991) An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems. Int J Numer Methods Eng 31(1):1\u201317. https:\/\/doi.org\/10.1002\/nme.1620310102","journal-title":"Int J Numer Methods Eng"},{"key":"2808_CR43","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4612-0871-6","volume-title":"Space-filling curves","author":"H Sagan","year":"1994","unstructured":"Sagan H (1994) Space-filling curves, 1st edn. Universitext, Springer, New York","edition":"1st edn."},{"key":"2808_CR44","doi-asserted-by":"publisher","unstructured":"Li J, Zingale M, Liao W-, Choudhary A, Ross R, Thakur R, Gropp W, Latham R, Siegel A, Gallagher B (2003) Parallel netCDF: a high-performance scientific I\/O interface. In: Proceedings of the 2003 ACM\/IEEE conference on Supercomputing - SC \u201903. https:\/\/doi.org\/10.1145\/1048935.1050189. ACM Press, New York, p 39","DOI":"10.1145\/1048935.1050189"},{"issue":"3","key":"2808_CR45","doi-asserted-by":"publisher","first-page":"511","DOI":"10.1103\/PhysRev.94.511","volume":"94","author":"PL Bhatnagar","year":"1954","unstructured":"Bhatnagar P L, Gross E P, Krook M (1954) A Model for Collision Processes in Gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511\u2013525. https:\/\/doi.org\/10.1103\/PhysRev.94.511","journal-title":"Phys Rev"},{"issue":"3","key":"2808_CR46","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1016\/0370-1573(92)90090-M","volume":"222","author":"R Benzi","year":"1992","unstructured":"Benzi R, Succi S, Vergassola M (1992) The lattice Boltzmann equation: theory and applications. Phys Rep 222(3):145\u2013197. https:\/\/doi.org\/10.1016\/0370-1573(92)90090-M","journal-title":"Phys Rep"},{"issue":"6","key":"2808_CR47","doi-asserted-by":"publisher","first-page":"479","DOI":"10.1209\/0295-5075\/17\/6\/001","volume":"17","author":"YH Qian","year":"1992","unstructured":"Qian Y H, D\u2019Humi\u00e8res D, Lallemand P (1992) Lattice BGK Models for Navier-Stokes Equation. Europhysics Letters (EPL) 17(6):479\u2013484. https:\/\/doi.org\/10.1209\/0295-5075\/17\/6\/001","journal-title":"Europhysics Letters (EPL)"},{"key":"2808_CR48","doi-asserted-by":"publisher","first-page":"563","DOI":"10.1016\/j.jcp.2014.10.002","volume":"280","author":"Y Kuwata","year":"2015","unstructured":"Kuwata Y, Suga K (2015) Anomaly of the lattice boltzmann methods in three-dimensional cylindrical flows. J Comput Phys 280:563\u2013569. https:\/\/doi.org\/10.1016\/j.jcp.2014.10.002","journal-title":"J Comput Phys"},{"issue":"16","key":"2808_CR49","doi-asserted-by":"publisher","first-page":"6367","DOI":"10.1016\/j.jcp.2011.04.031","volume":"230","author":"AT White","year":"2011","unstructured":"White A T, Chong C K (2011) Rotational invariance in the three-dimensional lattice boltzmann method is dependent on the choice of lattice. J Comput Phys 230(16):6367\u20136378. https:\/\/doi.org\/10.1016\/j.jcp.2011.04.031","journal-title":"J Comput Phys"},{"issue":"4","key":"2808_CR50","doi-asserted-by":"publisher","first-page":"325","DOI":"10.1002\/fld.337","volume":"39","author":"Z Guo","year":"2002","unstructured":"Guo Z, Shi B, Zheng C (2002) A coupled lattice bgk model for the boussinesq equations. Int J Numer Methods Fluids 39(4):325\u2013342. https:\/\/doi.org\/10.1002\/fld.337","journal-title":"Int J Numer Methods Fluids"},{"issue":"1","key":"2808_CR51","doi-asserted-by":"publisher","first-page":"282","DOI":"10.1006\/jcph.1998.6057","volume":"146","author":"X He","year":"1998","unstructured":"He X, Chen S, Doolen G D (1998) A novel thermal model for the lattice boltzmann method in incompressible limit. J Comput Phys 146(1):282\u2013300. https:\/\/doi.org\/10.1006\/jcph.1998.6057","journal-title":"J Comput Phys"},{"issue":"11","key":"2808_CR52","doi-asserted-by":"publisher","first-page":"3452","DOI":"10.1063\/1.1399290","volume":"13","author":"M Bouzidi","year":"2001","unstructured":"Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluids 13(11):3452\u20133459. https:\/\/doi.org\/10.1063\/1.1399290","journal-title":"Phys Fluids"},{"key":"2808_CR53","doi-asserted-by":"publisher","first-page":"366","DOI":"10.1016\/j.jcp.2012.11.027","volume":"237","author":"L Li","year":"2013","unstructured":"Li L, Mei R, Klausner J F (2013) Boundary conditions for thermal lattice boltzmann equation method. J Comput Phys 237:366\u2013395. https:\/\/doi.org\/10.1016\/j.jcp.2012.11.027","journal-title":"J Comput Phys"},{"key":"2808_CR54","first-page":"85ff","volume":"H.27","author":"B Saint-Venant","year":"1839","unstructured":"Saint-Venant B, Wantzel L (1839) M\u00e9moire et exp\u00e9rience sur l\u2019\u00e9coulement d\u00e9termin\u00e9 par des diff\u00e9rences de pressions consid\u00e9rables. J L\u2019\u00c9cole Polytech H.27:85ff","journal-title":"J L\u2019\u00c9cole Polytech"},{"key":"2808_CR55","doi-asserted-by":"publisher","first-page":"A132","DOI":"10.17815\/jlsrf-4-121-1","volume":"4","author":"D Krause","year":"2018","unstructured":"Krause D, Th\u00f6rnig P (2018) JURECA: Modular supercomputer at J\u00fclich Supercomputing Centre. JLSRF 4:A132. https:\/\/doi.org\/10.17815\/jlsrf-4-121-1","journal-title":"JLSRF"},{"issue":"1","key":"2808_CR56","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1016\/j.compfluid.2011.02.019","volume":"47","author":"RK Freitas","year":"2011","unstructured":"Freitas R K, Henze A, Meinke M, Schr\u00f6der W (2011) Analysis of Lattice-Boltzmann methods for internal flows. Comput Fluids 47(1):115\u2013121. https:\/\/doi.org\/10.1016\/j.compfluid.2011.02.019","journal-title":"Comput Fluids"},{"key":"2808_CR57","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1016\/j.compfluid.2013.01.013","volume":"75","author":"R Freitas","year":"2013","unstructured":"Freitas R, Meinke M, Schr\u00f6der W (2013) A lattice-boltzmann method with hierarchically refined meshes. Comput Fluids 75:127\u2013139. https:\/\/doi.org\/10.1016\/j.compfluid.2013.01.013","journal-title":"Comput Fluids"},{"key":"2808_CR58","doi-asserted-by":"crossref","unstructured":"Lintermann A, Meinke M, Schr\u00f6der W (2011) Investigations of the inspiration and heating capability of the human nasal cavity based on a Lattice-Boltzmann method. In: Proceedings of the ECCOMAS thematic international conference on simulation and modeling of biological flows (SIMBIO 2011), Brussels","DOI":"10.1007\/978-3-642-22244-3_10"},{"issue":"5","key":"2808_CR59","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1016\/0009-2509(65)80054-9","volume":"20","author":"JL Hudson","year":"1965","unstructured":"Hudson JL, Bankoff SG (1965) Heat transfer to a steady couette flow with pressure gradient. Chem Eng Sci 20(5):415\u2013423. https:\/\/doi.org\/10.1016\/0009-2509(65)80054-9","journal-title":"Chem Eng Sci"},{"issue":"9","key":"2808_CR60","doi-asserted-by":"publisher","first-page":"850","DOI":"10.1109\/34.232073","volume":"15","author":"DP Huttenlocher","year":"1993","unstructured":"Huttenlocher D P, Klanderman G A, Rucklidge W J (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850\u2013863. https:\/\/doi.org\/10.1109\/34.232073","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"2808_CR61","unstructured":"J\u00fclich Supercomputing Centre, Forschungszentrum J\u00fclich GmbH, Industry Relations [cited 15.03.2021]. http:\/\/www.fz-juelich.de\/ias\/jsc\/industry-relations"},{"key":"2808_CR62","unstructured":"High Performance Computing Center Stuttgart, Enterprises & SMEs [cited 15.03.2021]. https:\/\/www.hlrs.de\/solutions-services\/enterprises-sme"},{"key":"2808_CR63","unstructured":"Board of Trustees of the University of Illinois, Crafting solutions for grand challenges in industry and government [cited 15.03.2021]. http:\/\/www.ncsa.illinois.edu\/industry"},{"key":"2808_CR64","unstructured":"RIKEN, Collaboration with Industry [cited 15.03.2021]. https:\/\/www.riken.jp\/en\/collab"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02808-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-021-02808-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02808-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,23]],"date-time":"2022-10-23T20:46:40Z","timestamp":1666558000000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-021-02808-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1,1]]},"references-count":64,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2022,6]]}},"alternative-id":["2808"],"URL":"https:\/\/doi.org\/10.1007\/s10489-021-02808-2","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,1,1]]},"assertion":[{"value":"19 August 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 January 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"On behalf of all authors, the corresponding author states that there is no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interest\/Competing interests"}}]}}