{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T08:38:08Z","timestamp":1719995888105},"reference-count":68,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2021,10,26]],"date-time":"2021-10-26T00:00:00Z","timestamp":1635206400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,10,26]],"date-time":"2021-10-26T00:00:00Z","timestamp":1635206400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2022,5]]},"DOI":"10.1007\/s10489-021-02799-0","type":"journal-article","created":{"date-parts":[[2021,10,26]],"date-time":"2021-10-26T12:17:42Z","timestamp":1635250662000},"page":"8302-8320","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Exploring instance correlations with local discriminant model for multi-label feature selection"],"prefix":"10.1007","volume":"52","author":[{"given":"Yuling","family":"Fan","sequence":"first","affiliation":[]},{"given":"Jinghua","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Shunxiang","family":"Wu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,10,26]]},"reference":[{"key":"2799_CR1","doi-asserted-by":"crossref","unstructured":"Awadallah MA, Al-Betar MA, Hammouri AI, Alomari OA (2020) Binary JAYA algorithm with adaptive mutation for feature selection. Arab J Sci Eng 45(12):10875\u201310890","DOI":"10.1007\/s13369-020-04871-2"},{"key":"2799_CR2","doi-asserted-by":"crossref","unstructured":"Alweshah M, Al Khalaileh S, Gupta BB, Almomani A, Hammouri AI, Al-Betar MA (2020) The monarch butterfly optimization algorithm for solving feature selection problems. Neural Comput Appl:1\u201315","DOI":"10.1007\/s00521-020-05210-0"},{"key":"2799_CR3","doi-asserted-by":"publisher","first-page":"531","DOI":"10.1016\/j.eswa.2018.07.024","volume":"113","author":"B Al-Salemi","year":"2018","unstructured":"Al-Salemi B, Ayob M, Noah S A M (2018) Feature ranking for enhancing boosting-based multi-label text categorization. Expert Syst Appl 113:531\u2013543","journal-title":"Expert Syst Appl"},{"issue":"4","key":"2799_CR4","doi-asserted-by":"publisher","first-page":"537","DOI":"10.1109\/72.298224","volume":"5","author":"R Battiti","year":"1994","unstructured":"Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537\u2013550","journal-title":"IEEE Trans Neural Netw"},{"key":"2799_CR5","doi-asserted-by":"crossref","unstructured":"Bidgoli A A, Ebrahimpour-Komleh H, Rahnamayan S (2019) A novel multi-objective binary differential evolution algorithm for multi-label feature selection. Proceedings of the 2019 IEEE Congress on Evolutionary Computation, pp 1588\u20131595","DOI":"10.1109\/CEC.2019.8790287"},{"key":"2799_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ins.2020.08.004","volume":"547","author":"AA Bidgoli","year":"2020","unstructured":"Bidgoli A A, Ebrahimpour-Komleh H, Rahnamayan S (2020) Reference-point-based multi-objective optimization algorithm with opposition-based voting scheme for multi-label feature selection. Inf Sci 547:1\u201317","journal-title":"Inf Sci"},{"key":"2799_CR7","doi-asserted-by":"crossref","unstructured":"Braytee A, Wei L, Catchpoole D R, Kennedy P J (2017) Multi-label feature selection using correlation information. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp 1649\u20131656","DOI":"10.1145\/3132847.3132858"},{"key":"2799_CR8","unstructured":"Cai X, Nie F, Huang H (2013) Exact top-k feature selection via l2,0-norm constraint. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp 1240\u20131246"},{"issue":"8","key":"2799_CR9","doi-asserted-by":"publisher","first-page":"1321","DOI":"10.1007\/s13042-017-0647-y","volume":"9","author":"Z Cai","year":"2018","unstructured":"Cai Z, Zhu W (2018) Multi-label feature selection via feature manifold learning and sparsity regularization. Int J Mach Learn Cybern 9(8):1321\u20131334","journal-title":"Int J Mach Learn Cybern"},{"issue":"8","key":"2799_CR10","doi-asserted-by":"publisher","first-page":"1775","DOI":"10.1109\/TMI.2018.2807590","volume":"37","author":"L Chen","year":"2018","unstructured":"Chen L, Zhang H, Lu J, Thung K, Aibaidula A, Liu L, Chen S, Jin L, Wu J, Wang Q, Zhou L, Shen D (2018) Multi-label nonlinear matrix completion with transductive multi-task feature selection for joint MGMT and IDH1 status prediction of patient with high-grade gliomas. IEEE Trans Med Imaging 37(8):1775\u2013 1787","journal-title":"IEEE Trans Med Imaging"},{"key":"2799_CR11","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1016\/j.knosys.2019.02.021","volume":"173","author":"S Chen","year":"2019","unstructured":"Chen S, Zhang Y, Ding C, Zhang J, Luo B (2019) Extended adaptive Lasso for multi-class and multi-label feature selection. Knowl-Based Syst 173:28\u201336","journal-title":"Knowl-Based Syst"},{"issue":"1","key":"2799_CR12","first-page":"1","volume":"7","author":"J Dem\u0161ar","year":"2006","unstructured":"Dem\u0161ar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7(1):1\u201330","journal-title":"J Mach Learn Res"},{"key":"2799_CR13","doi-asserted-by":"publisher","first-page":"106456","DOI":"10.1016\/j.knosys.2020.106456","volume":"208","author":"H Dong","year":"2020","unstructured":"Dong H, Sun J, Sun X, Ding R (2020) A many-objective feature selection for multi-label classification. Knowl-Based Syst 208:106456","journal-title":"Knowl-Based Syst"},{"key":"2799_CR14","doi-asserted-by":"publisher","first-page":"106621","DOI":"10.1016\/j.knosys.2020.106621","volume":"212","author":"Y Fan","year":"2021","unstructured":"Fan Y, Liu J, Weng W, Chen B, Chen Y, Wu S (2021) Multi-label feature selection with constraint regression and adaptive spectral graph. Knowl-Based Syst 212:106621","journal-title":"Knowl-Based Syst"},{"issue":"2","key":"2799_CR15","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1007\/s10994-008-5064-8","volume":"73","author":"J F\u00fcrnkranz","year":"2008","unstructured":"F\u00fcrnkranz J, H\u00fcllermeier E, Menc\u00eda E L, Brinker K (2008) Multilabel classification via calibrated label ranking. Mach Learn 73(2):133\u2013153","journal-title":"Mach Learn"},{"issue":"3","key":"2799_CR16","first-page":"1157","volume":"3","author":"I Guyon","year":"2003","unstructured":"Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3(3):1157\u20131182","journal-title":"J Mach Learn Res"},{"key":"2799_CR17","unstructured":"Hou C, Nie F, Yi D, Wu Y (2011) Feature selection via joint embedding learning and sparse regression. Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp 1324\u20131329"},{"key":"2799_CR18","doi-asserted-by":"publisher","first-page":"106126","DOI":"10.1016\/j.knosys.2020.106126","volume":"203","author":"J Hu","year":"2020","unstructured":"Hu J, Li Y, Gao W, Zhang P (2020) Robust multi-label feature selection with dual-graph regularization. Knowl-Based Syst 203:106126","journal-title":"Knowl-Based Syst"},{"key":"2799_CR19","doi-asserted-by":"publisher","first-page":"107344","DOI":"10.1016\/j.patcog.2020.107344","volume":"104","author":"L Hu","year":"2020","unstructured":"Hu L, Li Y, Gao W, Zhang P, Hu J (2020) Multi-label feature selection with shared common mode. Pattern Recogn 104:107344","journal-title":"Pattern Recogn"},{"key":"2799_CR20","doi-asserted-by":"publisher","first-page":"105655","DOI":"10.1016\/j.knosys.2020.105655","volume":"195","author":"H Huang","year":"2020","unstructured":"Huang H, Liu H (2020) Feature selection for hierarchical classification via joint semantic and structural information of labels. Knowl-Based Syst 195:105655","journal-title":"Knowl-Based Syst"},{"issue":"12","key":"2799_CR21","doi-asserted-by":"publisher","first-page":"3309","DOI":"10.1109\/TKDE.2016.2608339","volume":"28","author":"J Huang","year":"2016","unstructured":"Huang J, Li G, Huang Q, Wu X (2016) Learning label-specific features and class-dependent labels for multi-label classification. IEEE Trans Knowl Data Eng 28(12):3309\u20133323","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"3","key":"2799_CR22","doi-asserted-by":"publisher","first-page":"876","DOI":"10.1109\/TCYB.2017.2663838","volume":"48","author":"J Huang","year":"2017","unstructured":"Huang J, Li G, Huang Q, Wu X (2017) Joint feature selection and classification for multilabel learning. IEEE Trans Cybern 48(3):876\u2013889","journal-title":"IEEE Trans Cybern"},{"key":"2799_CR23","doi-asserted-by":"publisher","first-page":"346","DOI":"10.1016\/j.patrec.2018.08.021","volume":"112","author":"R Huang","year":"2018","unstructured":"Huang R, Jiang W, Sun G (2018) Manifold-based constraint Laplacian score for multi-label feature selection. Pattern Recogn Lett 112:346\u2013352","journal-title":"Pattern Recogn Lett"},{"key":"2799_CR24","unstructured":"Jian L, Li J, Shu K, Liu H (2016) Multi-label informed feature selection. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp 1627\u20131633"},{"key":"2799_CR25","first-page":"1","volume":"1","author":"GN Karagoz","year":"2020","unstructured":"Karagoz G N, Yazici A, Dokeroglu T, Cosar A (2020) A new framework of multi-objective evolutionary algorithms for feature selection and multi-label classification of video data. Int J Mach Learn Cybern 1:1\u201319","journal-title":"Int J Mach Learn Cybern"},{"issue":"2","key":"2799_CR26","doi-asserted-by":"publisher","first-page":"e1240","DOI":"10.1002\/widm.1240","volume":"8","author":"S Kashef","year":"2018","unstructured":"Kashef S, Nezamabadi-pour H, Nikpour B (2018) Multilabel feature selection: a comprehensive review and guiding experiments. Wiley Interdiscip Rev Data Min Knowl Discov 8(2):e1240","journal-title":"Wiley Interdiscip Rev Data Min Knowl Discov"},{"key":"2799_CR27","doi-asserted-by":"publisher","first-page":"349","DOI":"10.1016\/j.patrec.2012.10.005","volume":"34","author":"J Lee","year":"2013","unstructured":"Lee J, Kim D (2013) Feature selection for multi-label classification using multivariate mutual information. Pattern Recogn Lett 34:349\u201357","journal-title":"Pattern Recogn Lett"},{"key":"2799_CR28","doi-asserted-by":"publisher","first-page":"2761","DOI":"10.1016\/j.patcog.2015.04.009","volume":"48","author":"J Lee","year":"2015","unstructured":"Lee J, Kim D (2015) Fast multi-label feature selection based on information-theoretic feature ranking. Pattern Recogn 48:2761\u2013 71","journal-title":"Pattern Recogn"},{"key":"2799_CR29","doi-asserted-by":"publisher","first-page":"2013","DOI":"10.1016\/j.eswa.2014.09.063","volume":"42","author":"J Lee","year":"2015","unstructured":"Lee J, Kim D (2015) Mutual information-based multi-label feature selection using interaction information. Expert Syst Appl 42:2013\u20132025","journal-title":"Expert Syst Appl"},{"key":"2799_CR30","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1016\/j.ins.2019.02.021","volume":"485","author":"J Lee","year":"2019","unstructured":"Lee J, Yu I, Park J, Kim D (2019) Memetic feature selection for multilabel text categorization using label frequency difference. Inf Sci 485:263\u2013280","journal-title":"Inf Sci"},{"key":"2799_CR31","doi-asserted-by":"publisher","first-page":"271","DOI":"10.1016\/j.neucom.2018.08.065","volume":"318","author":"Y Li","year":"2018","unstructured":"Li Y, Lin Y, Liu J, Weng W, Shi Z, Wu S (2018) Feature selection for multi-label learning based on kernelized fuzzy rough sets. Neurocomputing 318:271\u2013286","journal-title":"Neurocomputing"},{"key":"2799_CR32","doi-asserted-by":"publisher","first-page":"92","DOI":"10.1016\/j.neucom.2015.06.010","volume":"168","author":"Y Lin","year":"2015","unstructured":"Lin Y, Hu Q, Liu J, Duan J (2015) Multi-label feature selection based on max-dependency and min-redundancy. Neurocomputing 168:92\u2013103","journal-title":"Neurocomputing"},{"issue":"6","key":"2799_CR33","doi-asserted-by":"publisher","first-page":"1491","DOI":"10.1109\/TFUZZ.2017.2735947","volume":"25","author":"Y Lin","year":"2017","unstructured":"Lin Y, Hu Q, Liu J, Li J, Wu X (2017) Streaming feature selection for multilabel learning based on fuzzy mutual information. IEEE Trans Fuzzy Syst 25(6):1491\u20131507","journal-title":"IEEE Trans Fuzzy Syst"},{"key":"2799_CR34","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1016\/j.knosys.2018.04.004","volume":"152","author":"Y Lin","year":"2018","unstructured":"Lin Y, Li Y, Wang C, Chen J (2018) Attribute reduction for multi-label learning with fuzzy rough set. Knowl-Based Syst 152:51\u201361","journal-title":"Knowl-Based Syst"},{"key":"2799_CR35","doi-asserted-by":"publisher","first-page":"268","DOI":"10.1016\/j.neucom.2020.01.005","volume":"387","author":"J Liu","year":"2020","unstructured":"Liu J, Li Y, Weng W, Zhang J, Chen B, Wu S (2020) Feature selection for multi-label learning with streaming label. Neurocomputing 387:268\u2013278","journal-title":"Neurocomputing"},{"key":"2799_CR36","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1016\/j.patcog.2018.07.021","volume":"84","author":"J Liu","year":"2018","unstructured":"Liu J, Lin Y, Li Y, Weng W, Wu S (2018) Online multi-label streaming feature selection based on neighborhood rough set. Pattern Recogn 84:273\u2013287","journal-title":"Pattern Recogn"},{"key":"2799_CR37","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1016\/j.knosys.2017.12.008","volume":"143","author":"J Liu","year":"2018","unstructured":"Liu J, Lin Y, Wu S, Wang C (2018) Online multi-label group feature selection. Knowl-Based Syst 143:42\u201357","journal-title":"Knowl-Based Syst"},{"issue":"4","key":"2799_CR38","doi-asserted-by":"publisher","first-page":"1021","DOI":"10.1109\/TMM.2012.2187179","volume":"14","author":"Z Ma","year":"2012","unstructured":"Ma Z, Nie F, Yang Y, Uijlings J R, Sebe N (2012) Web image annotation via subspace-sparsity collaborated feature selection. IEEE Trans Multimed 14(4):1021\u20131030","journal-title":"IEEE Trans Multimed"},{"key":"2799_CR39","doi-asserted-by":"crossref","unstructured":"Mishra N K, Singh P K (2020) FS-MLC: Feature Selection for multi-label classification using clustering in feature space. Inf Process Manag 57(4):102240","DOI":"10.1016\/j.ipm.2020.102240"},{"key":"2799_CR40","unstructured":"Nie F, Huang H, Cai X, Ding C H (2010) Efficient and robust feature selection via joint l2,1-norms minimization. Proceedings of the Twenty-Third International Conference on Neural Information Processing Systems, pp 1813\u20131821"},{"key":"2799_CR41","doi-asserted-by":"publisher","first-page":"105956","DOI":"10.1016\/j.asoc.2019.105956","volume":"87","author":"Z Noorie","year":"2020","unstructured":"Noorie Z, Afsari F (2020) Sparse feature selection: relevance, redundancy and locality structure preserving guided by pairwise constraints. Appl Soft Comput 87:105956","journal-title":"Appl Soft Comput"},{"issue":"5","key":"2799_CR42","doi-asserted-by":"publisher","first-page":"880","DOI":"10.1109\/TKDE.2018.2847685","volume":"31","author":"T Pang","year":"2018","unstructured":"Pang T, Nie F, Han J, Li X (2018) Efficient feature selection via l2,0-norm constrained sparse regression. IEEE Trans Knowl Data Eng 31(5):880\u2013893","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"2799_CR43","doi-asserted-by":"publisher","first-page":"105285","DOI":"10.1016\/j.knosys.2019.105285","volume":"192","author":"M Paniri","year":"2020","unstructured":"Paniri M, Dowlatshahi M B, Nezamabadi-pour H (2020) MLACO: A multi-label feature selection algorithm based on ant colony optimization. Knowl-Based Syst 192:105285","journal-title":"Knowl-Based Syst"},{"issue":"1","key":"2799_CR44","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1007\/s10462-016-9516-4","volume":"49","author":"RB Pereira","year":"2018","unstructured":"Pereira R B, Plastino A, Zadrozny B, Merschmann L H (2018) Categorizing feature selection methods for multi-label classification. Artif Intell Rev 49(1):57\u201378","journal-title":"Artif Intell Rev"},{"key":"2799_CR45","doi-asserted-by":"crossref","unstructured":"Qi G-J, Hua X-S, Rui Y, Tang J, Mei T, Zhang H-J (2007) Correlative multi-label video annotation. Proceedings of the Fifteenth ACM international conference on Multimedia, pp 17\u201326","DOI":"10.1145\/1291233.1291245"},{"issue":"3","key":"2799_CR46","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1007\/s10994-011-5256-5","volume":"85","author":"J Read","year":"2011","unstructured":"Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn 85(3):333","journal-title":"Mach Learn"},{"key":"2799_CR47","doi-asserted-by":"publisher","first-page":"122854","DOI":"10.1109\/ACCESS.2019.2927400","volume":"7","author":"W Seo","year":"2019","unstructured":"Seo W, Kim D, Lee J (2019) Generalized information-theoretic criterion for multi-label feature selection. IEEE Access 7:122854\u2013122863","journal-title":"IEEE Access"},{"key":"2799_CR48","doi-asserted-by":"crossref","unstructured":"Sha Z -C, Liu Z -M, Ma C, Chen J (2020) Feature selection for multi-label classification by maximizing full-dimensional conditional mutual information. Appl Intell:1\u201315","DOI":"10.1007\/s10489-020-01822-0"},{"key":"2799_CR49","doi-asserted-by":"publisher","first-page":"104830","DOI":"10.1016\/j.knosys.2019.07.001","volume":"187","author":"R Shang","year":"2020","unstructured":"Shang R, Xu K, Shang F, Jiao L (2020) Sparse and low-redundant subspace learning-based dual-graph regularized robust feature selection. Knowl-Based Syst 187:104830","journal-title":"Knowl-Based Syst"},{"key":"2799_CR50","doi-asserted-by":"publisher","first-page":"447","DOI":"10.1016\/j.neucom.2018.10.047","volume":"329","author":"Z Sun","year":"2019","unstructured":"Sun Z, Zhang J, Dai L, Li C, Zhou C, Xin J, Li S (2019) Mutual information based multi-label feature selection via constrained convex optimization. Neurocomputing 329:447\u2013456","journal-title":"Neurocomputing"},{"issue":"3","key":"2799_CR51","doi-asserted-by":"publisher","first-page":"573","DOI":"10.1007\/s13042-019-00996-5","volume":"11","author":"MA Tawhid","year":"2020","unstructured":"Tawhid M A, Ibrahim A M (2020) Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm. Int J Mach Learn Cybern 11(3):573\u2013602","journal-title":"Int J Mach Learn Cybern"},{"key":"2799_CR52","unstructured":"Trohidis K, Tsoumakas G, Kalliris G, Vlahavas IP (2008) Multi- label classification of music into emotions. Proc ISMIR 8:325\u2013330"},{"key":"2799_CR53","doi-asserted-by":"publisher","first-page":"3027","DOI":"10.1007\/s10489-019-01431-6","volume":"49","author":"C Wang","year":"2019","unstructured":"Wang C, Lin Y, Liu J (2019) Feature selection for multi-label learning with missing labels. Appl Intell 49:3027\u20133042","journal-title":"Appl Intell"},{"key":"2799_CR54","doi-asserted-by":"crossref","unstructured":"Wang W, Dai Q, Li F, Xiong Y, Wei D (2020) MLCDForest: multi-label classification with deep forest in disease prediction for long non-coding RNAs. Briefings in Bioinformatics","DOI":"10.1093\/bib\/bbaa104"},{"key":"2799_CR55","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1016\/j.neunet.2018.02.002","volume":"102","author":"J Wen","year":"2018","unstructured":"Wen J, Xu Y, Li Z, Ma Z, Xu Y (2018) Inter-class sparsity based discriminative least square regression. Neural Netw 102:36\u201347","journal-title":"Neural Netw"},{"key":"2799_CR56","doi-asserted-by":"publisher","first-page":"127427","DOI":"10.1109\/ACCESS.2019.2931451","volume":"7","author":"W Weng","year":"2019","unstructured":"Weng W, Chen C -L, Wu S -X, Li Y -W, Wen J (2019) An efficient stacking model of multi-label classification based on pareto optimum. IEEE Access 7:127427\u201337","journal-title":"IEEE Access"},{"key":"2799_CR57","doi-asserted-by":"crossref","unstructured":"Wu B, Zhong E, Horner A, Yang Q (2014) Music emotion recognition by multi-label multi-layer multi-instance multi-view learning. Proceedings of the Twenty-Second ACM international conference on Multimedia, pp 117\u2013126","DOI":"10.1145\/2647868.2654904"},{"key":"2799_CR58","doi-asserted-by":"publisher","first-page":"1791","DOI":"10.1007\/s00521-012-0827-3","volume":"21","author":"S Yang","year":"2012","unstructured":"Yang S, Hou C, Nie F, Wu Y (2012) Unsupervised maximum margin feature selection via l2,1,-norm minimization. Neural Comput Appl 21:1791\u20131799","journal-title":"Neural Comput Appl"},{"key":"2799_CR59","unstructured":"Yang Y, Shen HT, Ma Z, Huang Z, Zhou X (2011) L2,1-norm regularized discriminative feature selection for unsupervised. Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp 1589\u20131594"},{"issue":"10","key":"2799_CR60","doi-asserted-by":"publisher","first-page":"2761","DOI":"10.1109\/TIP.2010.2049235","volume":"19","author":"Y Yang","year":"2010","unstructured":"Yang Y, Xu D, Nie F, Yan S, Zhuang Y (2010) Image clustering using local discriminant models and global integration. IEEE Trans Image Process 19(10):2761\u20132773","journal-title":"IEEE Trans Image Process"},{"key":"2799_CR61","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1016\/j.patcog.2019.06.003","volume":"95","author":"J Zhang","year":"2019","unstructured":"Zhang J, Luo Z, Li C, Zhou C, Li S (2019) Manifold regularized discriminative feature selection for multi-label learning. Pattern Recogn 95:136\u2013150","journal-title":"Pattern Recogn"},{"key":"2799_CR62","doi-asserted-by":"publisher","first-page":"2038","DOI":"10.1016\/j.patcog.2006.12.019","volume":"40","author":"M-L Zhang","year":"2007","unstructured":"Zhang M -L, Zhou Z -H (2007) ML-KNN: A lazy learning approach to multi-label learning. Pattern Recogn 40:2038\u20132048","journal-title":"Pattern Recogn"},{"issue":"8","key":"2799_CR63","doi-asserted-by":"publisher","first-page":"1819","DOI":"10.1109\/TKDE.2013.39","volume":"26","author":"M-L Zhang","year":"2013","unstructured":"Zhang M -L, Zhou Z -H (2013) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819\u20131837","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"1","key":"2799_CR64","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1109\/TPAMI.2014.2339815","volume":"37","author":"ML Zhang","year":"2014","unstructured":"Zhang M L, Wu L (2014) LIFT: Multi-Label learning with Label-Specific features. IEEE Trans Pattern Anal Mach Intell 37(1):107\u2013120","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"2799_CR65","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.patcog.2019.06.004","volume":"95","author":"P Zhang","year":"2019","unstructured":"Zhang P, Liu G, Gao W (2019) Distinguishing two types of labels for multi-label feature selection. Pattern Recogn 95:72\u201382","journal-title":"Pattern Recogn"},{"issue":"1","key":"2799_CR66","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-016-0028-x","volume":"7","author":"Y Zhang","year":"2017","unstructured":"Zhang Y, Gong D, Sun X, Guo Y (2017) A PSO-based multi-objective multi-label feature selection method in classification. Sci Rep 7(1):1\u201312","journal-title":"Sci Rep"},{"key":"2799_CR67","doi-asserted-by":"crossref","unstructured":"Zhang Y, Wu J, Cai Z, Philip S Y (2020) Multi-view Multi-label Learning with Sparse Feature Selection for Image Annotation. IEEE Trans Multimed 22(11):2844\u20132857","DOI":"10.1109\/TMM.2020.2966887"},{"key":"2799_CR68","doi-asserted-by":"publisher","first-page":"883","DOI":"10.1007\/s10489-018-1305-0","volume":"49","author":"H Zhou","year":"2019","unstructured":"Zhou H, Zhang Y, Zhang Y, Liu H (2019) Feature selection based on conditional mutual information: minimum conditional relevance and minimum conditional redundancy. Appl Intell 49:883\u2013896","journal-title":"Appl Intell"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02799-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-021-02799-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02799-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,8]],"date-time":"2023-02-08T05:40:43Z","timestamp":1675834843000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-021-02799-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10,26]]},"references-count":68,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2022,5]]}},"alternative-id":["2799"],"URL":"https:\/\/doi.org\/10.1007\/s10489-021-02799-0","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,10,26]]},"assertion":[{"value":"25 August 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 October 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with Ethical Standards"}},{"value":"None.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interests"}}]}}