{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T19:54:37Z","timestamp":1723060477291},"reference-count":56,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2021,6,24]],"date-time":"2021-06-24T00:00:00Z","timestamp":1624492800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,6,24]],"date-time":"2021-06-24T00:00:00Z","timestamp":1624492800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2022,2]]},"DOI":"10.1007\/s10489-021-02597-8","type":"journal-article","created":{"date-parts":[[2021,6,24]],"date-time":"2021-06-24T09:03:37Z","timestamp":1624525417000},"page":"2903-2917","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":32,"title":["Automated detection of cyclic alternating pattern and classification of sleep stages using deep neural network"],"prefix":"10.1007","volume":"52","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3114-6523","authenticated-orcid":false,"given":"Hui Wen","family":"Loh","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0293-3280","authenticated-orcid":false,"given":"Chui Ping","family":"Ooi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1443-2624","authenticated-orcid":false,"given":"Shivani G.","family":"Dhok","sequence":"additional","affiliation":[]},{"given":"Manish","family":"Sharma","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8181-7685","authenticated-orcid":false,"given":"Ankit A.","family":"Bhurane","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2689-8552","authenticated-orcid":false,"given":"U. Rajendra","family":"Acharya","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,6,24]]},"reference":[{"issue":"3","key":"2597_CR1","doi-asserted-by":"publisher","first-page":"261","DOI":"10.5534\/wjmh.180045","volume":"37","author":"JW Cho","year":"2019","unstructured":"Cho JW, Duffy JF (2019) Sleep, sleep disorders, and sexual dysfunction. In world journal of men\u2019s health. Korean Society for Sexual Medicine and Andrology 37(3):261\u2013275. https:\/\/doi.org\/10.5534\/wjmh.180045","journal-title":"Korean Society for Sexual Medicine and Andrology"},{"key":"2597_CR2","doi-asserted-by":"publisher","unstructured":"Colten HR, Altevogt BM (2006) Institute of Medicine (US) committee on sleep medicine and research (ed) sleep disorders and sleep deprivation: an unmet public health problem. National Academies Press (US). https:\/\/doi.org\/10.17226\/11617","DOI":"10.17226\/11617"},{"issue":"9","key":"2597_CR3","doi-asserted-by":"publisher","first-page":"1006","DOI":"10.1093\/aje\/kws342","volume":"177","author":"PE Peppard","year":"2013","unstructured":"Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177(9):1006\u20131014. https:\/\/doi.org\/10.1093\/aje\/kws342","journal-title":"Am J Epidemiol"},{"key":"2597_CR4","doi-asserted-by":"crossref","unstructured":"Roth T (2007) Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med 3(5 Suppl):S7\u2013S10 http:\/\/www.ncbi.nlm.nih.gov\/pubmed\/17824495","DOI":"10.5664\/jcsm.26929"},{"issue":"2","key":"2597_CR5","doi-asserted-by":"publisher","first-page":"269","DOI":"10.1164\/rccm.200911-1746OC","volume":"182","author":"S Redline","year":"2010","unstructured":"Redline S, Yenokyan G, Gottlieb DJ, Shahar E, O\u2019Connor GT, Resnick HE, Diener-West M, Sanders MH, Wolf PA, Geraghty EM, Ali T, Lebowitz M, Punjabi NM (2010) Obstructive sleep apnea\u2013hypopnea and incident stroke. Am J Respir Crit Care Med 182(2):269\u2013277. https:\/\/doi.org\/10.1164\/rccm.200911-1746OC","journal-title":"Am J Respir Crit Care Med"},{"issue":"2","key":"2597_CR6","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1016\/j.jsmc.2017.01.005","volume":"12","author":"MS Khan","year":"2017","unstructured":"Khan MS, Aouad R (2017) The effects of insomnia and sleep loss on cardiovascular disease. Sleep Med Clin 12(2):167\u2013177. https:\/\/doi.org\/10.1016\/j.jsmc.2017.01.005","journal-title":"Sleep Med Clin"},{"issue":"5","key":"2597_CR7","doi-asserted-by":"publisher","first-page":"27","DOI":"10.2147\/NSS.S34838","volume":"1","author":"TA Hargens","year":"2013","unstructured":"Hargens TA, Kaleth AS, Edwards ES, Butner KL (2013) Association between sleep disorders, obesity, and exercise: a review. Nat Sci Sleep 1(5):27\u201335. https:\/\/doi.org\/10.2147\/NSS.S34838","journal-title":"Nat Sci Sleep"},{"issue":"8","key":"2597_CR8","doi-asserted-by":"publisher","first-page":"1173","DOI":"10.5665\/sleep.2012","volume":"35","author":"S Stranges","year":"2012","unstructured":"Stranges S, Tigbe W, G\u00f3mez-Oliv\u00e9 FX, Thorogood M, Kandala NB (2012) Sleep problems: an emerging global epidemic? Findings from the INDEPTH WHO-SAGE study among more than 40,000 older adults from 8 countries across Africa and Asia. Sleep 35(8):1173\u20131181. https:\/\/doi.org\/10.5665\/sleep.2012","journal-title":"Sleep"},{"issue":"12","key":"2597_CR9","doi-asserted-by":"publisher","first-page":"1875","DOI":"10.5665\/sleep.5232","volume":"38","author":"A Koyanagi","year":"2015","unstructured":"Koyanagi A, Stickley A (2015) The association between sleep problems and psychotic symptoms in the general population: a global perspective. Sleep 38(12):1875\u20131885. https:\/\/doi.org\/10.5665\/sleep.5232","journal-title":"Sleep"},{"issue":"1","key":"2597_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/healthcare7010001","volume":"7","author":"VK Chattu","year":"2018","unstructured":"Chattu VK, Manzar MD, Kumary S, Burman D, Spence DW, Pandi-Perumal SR (2018) The global problem of insufficient sleep and its serious public health implications. Healthcare 7(1):1. https:\/\/doi.org\/10.3390\/healthcare7010001","journal-title":"Healthcare"},{"issue":"24","key":"2597_CR11","doi-asserted-by":"publisher","first-page":"8963","DOI":"10.3390\/app10248963","volume":"10","author":"HW Loh","year":"2020","unstructured":"Loh HW, Ooi CP, Vicnesh J, Oh SL, Faust O, Gertych A, Acharya UR (2020) Automated detection of sleep stages using deep learning techniques: a systematic review of the last decade (2010\u20132020). Appl Sci 10(24):8963. https:\/\/doi.org\/10.3390\/app10248963","journal-title":"Appl Sci"},{"issue":"3","key":"2597_CR12","doi-asserted-by":"publisher","first-page":"305","DOI":"10.1046\/j.1440-1819.2001.00810.x","volume":"55","author":"T Hori","year":"2001","unstructured":"Hori T, Sugita Y, Koga E, Shirakawa S, Inoue K, Uchida S, Kuwahara H, Kousaka M, Kobayashi T, Tsuji Y, Terashima M, Fukuda K, Fukuda N, Sleep Computing Committee of the Japanese Society of Sleep Research Society (2001) Proposed supplements and amendments to \u201ca manual of standardized terminology, techniques and scoring system for sleep stages of human subjects\u201d, the Rechtschaffen & Kales (1968) standard. Psychiatry Clin Neurosci 55(3):305\u2013310. https:\/\/doi.org\/10.1046\/j.1440-1819.2001.00810.x","journal-title":"Psychiatry Clin Neurosci"},{"key":"2597_CR13","volume-title":"The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specification","author":"C Iber","year":"2007","unstructured":"Iber C, Ancoli-Israel S, Chesson AL, Quan SF (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specification. Darien, IL, USA, American Academy of Sleep Medicine"},{"issue":"1","key":"2597_CR14","doi-asserted-by":"publisher","first-page":"5","DOI":"10.2337\/diaspect.29.1.5","volume":"29","author":"DW Carley","year":"2016","unstructured":"Carley DW, Farabi SS (2016) Physiology of sleep. Diabetes Spectr 29(1):5\u20139. https:\/\/doi.org\/10.2337\/diaspect.29.1.5","journal-title":"Diabetes Spectr"},{"key":"2597_CR15","unstructured":"Brain Basics: Understanding Sleep. National Institute of Neurological Disorders and Stroke. https:\/\/www.ninds.nih.gov\/Disorders\/patient-caregiver-education\/Understanding-sleep. Accessed 17-Oct-2020"},{"issue":"15","key":"2597_CR16","doi-asserted-by":"publisher","first-page":"6830","DOI":"10.1523\/JNEUROSCI.22-15-06830.2002","volume":"22","author":"S Gais","year":"2002","unstructured":"Gais S, M\u00f6lle M, Helms K, Born J (2002) Learning-dependent increases in sleep spindle density. J Neurosci 22(15):6830\u20136834. https:\/\/doi.org\/10.1523\/JNEUROSCI.22-15-06830.2002","journal-title":"J Neurosci"},{"issue":"2","key":"2597_CR17","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1111\/j.1479-8425.2006.00201.x","volume":"4","author":"M Takahara","year":"2006","unstructured":"Takahara M, Kanayama S, Nittono H, Hori T (2006) REM sleep EEG pattern: examination by a new EEG scoring system for REM sleep period. Sleep Biol Rhythms 4(2):105\u2013110. https:\/\/doi.org\/10.1111\/j.1479-8425.2006.00201.x","journal-title":"Sleep Biol Rhythms"},{"issue":"2","key":"2597_CR18","doi-asserted-by":"publisher","first-page":"99","DOI":"10.5664\/jcsm.27124","volume":"4","author":"H Schulz","year":"2008","unstructured":"Schulz H (2008) Rethinking sleep analysis. J Clin Sleep Med 4(2):99\u2013103","journal-title":"J Clin Sleep Med"},{"issue":"9","key":"2597_CR19","doi-asserted-by":"publisher","first-page":"1185","DOI":"10.1109\/10.867928","volume":"47","author":"B Kemp","year":"2000","unstructured":"Kemp B, Zwinderman AH, Tuk B, Kamphuisen HA, Obery\u00e9 JJ (2000) Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng 47(9):1185\u20131194. https:\/\/doi.org\/10.1109\/10.867928","journal-title":"IEEE Trans Biomed Eng"},{"issue":"4","key":"2597_CR20","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1111\/j.1365-2869.1996.00201.x","volume":"5","author":"J Pardey","year":"1996","unstructured":"Pardey J, Roberts S, Tarassenko L, Stradling J (1996) A new approach to the analysis of the human sleep\/wakefulness continuum. J Sleep Res 5(4):201\u2013210. https:\/\/doi.org\/10.1111\/j.1365-2869.1996.00201.x","journal-title":"J Sleep Res"},{"issue":"6","key":"2597_CR21","doi-asserted-by":"publisher","first-page":"461","DOI":"10.1016\/S0987-7053(99)80016-1","volume":"28","author":"P Hal\u00e1sz","year":"1998","unstructured":"Hal\u00e1sz P (1998) Hierarchy of micro-arousals and the microstructure of sleep. Neurophysiol Clin Neurophysiol 28(6):461\u2013475. https:\/\/doi.org\/10.1016\/S0987-7053(99)80016-1","journal-title":"Neurophysiol Clin Neurophysiol"},{"issue":"2","key":"2597_CR22","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1093\/sleep\/8.2.137","volume":"8","author":"MG Terzano","year":"1985","unstructured":"Terzano MG, Mancia D, Salati MR, Costani G, Decembrino A, Parrino L (1985) The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 8(2):137\u2013145. https:\/\/doi.org\/10.1093\/sleep\/8.2.137","journal-title":"Sleep"},{"issue":"6","key":"2597_CR23","doi-asserted-by":"publisher","first-page":"537","DOI":"10.1016\/S1389-9457(01)00149-6","volume":"2","author":"MG Terzano","year":"2001","unstructured":"Terzano MG, Parrino L, Sherieri A, Chervin R, Chokroverty S, Guilleminault C, Hirshkowitz M, Mahowald M, Moldofsky H, Rosa A, Thomas R, Walters A (2001) Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med 2(6):537\u2013553. https:\/\/doi.org\/10.1016\/S1389-9457(01)00149-6","journal-title":"Sleep Med"},{"issue":"1","key":"2597_CR24","doi-asserted-by":"publisher","first-page":"185","DOI":"10.1186\/s12938-018-0616-z","volume":"17","author":"F Machado","year":"2018","unstructured":"Machado F, Sales F, Santos C, Dourado A, Teixeira CA (2018) A knowledge discovery methodology from EEG data for cyclic alternating pattern detection. Biomed Eng Online 17(1):185. https:\/\/doi.org\/10.1186\/s12938-018-0616-z","journal-title":"Biomed Eng Online"},{"key":"2597_CR25","doi-asserted-by":"publisher","first-page":"103691","DOI":"10.1016\/j.compbiomed.2020.103691","volume":"119","author":"S Dhok","year":"2020","unstructured":"Dhok S, Pimpalkhute V, Chandurkar A, Bhurane AA, Sharma M, Acharya UR (2020) Automated phase classification in cyclic alternating patterns in sleep stages using Wigner\u2013Ville distribution based features. Comput Biol Med 119:103691. https:\/\/doi.org\/10.1016\/j.compbiomed.2020.103691","journal-title":"Comput Biol Med"},{"issue":"1","key":"2597_CR26","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1016\/j.smrv.2011.02.003","volume":"16","author":"L Parrino","year":"2012","unstructured":"Parrino L, Ferri R, Bruni O, Terzano MG (2012) Cyclic alternating pattern (CAP): the marker of sleep instability. Sleep Med Rev 16(1):27\u201345. https:\/\/doi.org\/10.1016\/j.smrv.2011.02.003","journal-title":"Sleep Med Rev"},{"key":"2597_CR27","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2018\/8713409","volume":"2018","author":"S Korkmaz","year":"2018","unstructured":"Korkmaz S, Bilecenoglu NT, Aksu M, Yoldas TK (2018) Cyclic alternating pattern in obstructive sleep apnea patients with versus without excessive sleepiness. Sleep Disord 2018:1\u20137. https:\/\/doi.org\/10.1155\/2018\/8713409","journal-title":"Sleep Disord"},{"issue":"4","key":"2597_CR28","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1016\/j.smrv.2005.12.004","volume":"10","author":"L Parrino","year":"2006","unstructured":"Parrino L, Halasz P, Tassinari CA, Terzano MG (2006) CAP, epilepsy and motor events during sleep: the unifying role of arousal. Sleep Med Rev 10(4):267\u2013285. https:\/\/doi.org\/10.1016\/j.smrv.2005.12.004","journal-title":"Sleep Med Rev"},{"issue":"8","key":"2597_CR29","doi-asserted-by":"publisher","first-page":"1042","DOI":"10.1093\/sleep\/26.8.1042","volume":"26","author":"RJ Thomas","year":"2003","unstructured":"Thomas RJ (2003) Arousals in sleep-disordered breathing: patterns and implications. Sleep 26(8):1042\u20131047. https:\/\/doi.org\/10.1093\/sleep\/26.8.1042","journal-title":"Sleep"},{"issue":"6","key":"2597_CR30","doi-asserted-by":"publisher","first-page":"425","DOI":"10.1097\/WNP.0b013e31815a028e","volume":"24","author":"MY Kassab","year":"2007","unstructured":"Kassab MY, Farooq MU, Diaz-Arrastia R, Van Ness PC (2007) The clinical significance of EEG cyclic alternating pattern during coma. J Clin Neurophysiol 24(6):425\u2013428. https:\/\/doi.org\/10.1097\/WNP.0b013e31815a028e","journal-title":"J Clin Neurophysiol"},{"key":"2597_CR31","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1016\/j.compbiomed.2019.01.013","volume":"106","author":"N Michielli","year":"2019","unstructured":"Michielli N, Acharya UR, Molinari F (2019) Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput Biol Med 106:71\u201381. https:\/\/doi.org\/10.1016\/j.compbiomed.2019.01.013","journal-title":"Comput Biol Med"},{"issue":"4","key":"2597_CR32","doi-asserted-by":"publisher","first-page":"890","DOI":"10.1016\/j.bbe.2018.05.005","volume":"38","author":"RK Tripathy","year":"2018","unstructured":"Tripathy RK, Acharya UR (2018) Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework. Biocybern Biomed Eng 38(4):890\u2013902. https:\/\/doi.org\/10.1016\/j.bbe.2018.05.005","journal-title":"Biocybern Biomed Eng"},{"key":"2597_CR33","doi-asserted-by":"publisher","first-page":"106149","DOI":"10.1016\/j.cmpb.2021.106149","volume":"106149","author":"D Cimr","year":"2021","unstructured":"Cimr D, Studnicka F, Fujita H, Cimler R, Slegr J (2021) Application of mechanical trigger for unobtrusive detection of respiratory disorders from body recoil micro-movements. Comput Methods Prog Biomed 106149:106149. https:\/\/doi.org\/10.1016\/j.cmpb.2021.106149","journal-title":"Comput Methods Prog Biomed"},{"issue":"11","key":"2597_CR34","doi-asserted-by":"publisher","first-page":"1562","DOI":"10.1093\/sleep\/30.11.1562","volume":"30","author":"V Svetnik","year":"2007","unstructured":"Svetnik V, Ma J, Soper KA, Doran S, Renger JJ, Deacon S, Koblan KS (2007) Evaluation of automated and semi-automated scoring of Polysomnographic recordings from a clinical trial using Zolpidem in the treatment of insomnia. Sleep 30(11):1562\u20131574. https:\/\/doi.org\/10.1093\/sleep\/30.11.1562","journal-title":"Sleep"},{"issue":"7","key":"2597_CR35","doi-asserted-by":"publisher","first-page":"1394","DOI":"10.1093\/sleep\/27.7.1394","volume":"27","author":"SD Pittman","year":"2004","unstructured":"Pittman SD, MacDonald MM, Fogel RB, Malhotra A, Todros K, Levy B, Geva AB, White DP (2004) Assessment of automated scoring of polysomnographic recordings in a population with suspected sleep-disordered breathing. Sleep 27(7):1394\u20131403. https:\/\/doi.org\/10.1093\/sleep\/27.7.1394","journal-title":"Sleep"},{"issue":"3","key":"2597_CR36","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1159\/000085205","volume":"51","author":"P Anderer","year":"2005","unstructured":"Anderer P, Gruber G, Parapatics S, Woertz M, Miazhynskaia T, Klosch G, Saletu B, Zeitlhofer J, Barbanoj MJ, Danker-Hopfe H, Himanen SL, Kemp B, Penzel T, Grozinger M, Kunz D, Rappelsberger P, Schlogl A, Dorffner G (2005) An E-health solution for automatic sleep classification according to Rechtschaffen and kales: validation study of the Somnolyzer 24 \u00d7 7 utilizing the siesta database. Neuropsychobiology 51(3):115\u2013133. https:\/\/doi.org\/10.1159\/000085205","journal-title":"Neuropsychobiology"},{"key":"2597_CR37","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1016\/j.compbiomed.2018.08.022","volume":"102","author":"MM Rahman","year":"2018","unstructured":"Rahman MM, Bhuiyan MIH, Hassan AR (2018) Sleep stage classification using single-channel EOG. Comput Biol Med 102:211\u2013220. https:\/\/doi.org\/10.1016\/j.compbiomed.2018.08.022","journal-title":"Comput Biol Med"},{"key":"2597_CR38","doi-asserted-by":"publisher","unstructured":"Yildirim O, Baloglu UB, Acharya UR (2019) A deep learning model for automated sleep stages classification using PSG signals. Int J Environ Res Public Health 16(4). https:\/\/doi.org\/10.3390\/ijerph16040599","DOI":"10.3390\/ijerph16040599"},{"issue":"1","key":"2597_CR39","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1007\/s11517-015-1349-9","volume":"54","author":"MO Mendez","year":"2016","unstructured":"Mendez MO, Chouvarda I, Alba A, Bianchi AM, Grassi A, Arce-Santana E, Milioli G, Terzano MG, Parrino L (2016) Analysis of A-phase transitions during the cyclic alternating pattern under normal sleep. Med Biol Eng Comput 54(1):133\u2013148. https:\/\/doi.org\/10.1007\/s11517-015-1349-9","journal-title":"Med Biol Eng Comput"},{"issue":"9","key":"2597_CR40","doi-asserted-by":"publisher","first-page":"1695","DOI":"10.1109\/TNSRE.2019.2934828","volume":"27","author":"S Hartmann","year":"2019","unstructured":"Hartmann S, Baumert M (2019) Automatic A-phase detection of cyclic alternating patterns in sleep using dynamic temporal information. IEEE Trans Neural Syst Rehabil Eng 27(9):1695\u20131703. https:\/\/doi.org\/10.1109\/TNSRE.2019.2934828","journal-title":"IEEE Trans Neural Syst Rehabil Eng"},{"issue":"23","key":"2597_CR41","doi-asserted-by":"publisher","first-page":"E215","DOI":"10.1161\/01.cir.101.23.e215","volume":"101","author":"AL Goldberger","year":"2000","unstructured":"Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):E215\u2013E220. https:\/\/doi.org\/10.1161\/01.cir.101.23.e215","journal-title":"Circulation"},{"issue":"4","key":"2597_CR42","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1016\/j.ipm.2009.03.002","volume":"45","author":"M Sokolova","year":"2009","unstructured":"Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45(4):427\u2013437. https:\/\/doi.org\/10.1016\/j.ipm.2009.03.002","journal-title":"Inf Process Manag"},{"key":"2597_CR43","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1007\/978-3-662-44851-9_15","volume":"8725","author":"ZC Lipton","year":"2014","unstructured":"Lipton ZC, Elkan C, Naryanaswamy B (2014) Optimal thresholding of classifiers to maximize F1 measure. Mach Learn Knowl Discov Databases 8725:225\u2013239. https:\/\/doi.org\/10.1007\/978-3-662-44851-9_15","journal-title":"Mach Learn Knowl Discov Databases"},{"issue":"2","key":"2597_CR44","doi-asserted-by":"publisher","first-page":"343","DOI":"10.1007\/s11517-016-1519-4","volume":"55","author":"TL da Silveira","year":"2017","unstructured":"da Silveira TL, Kozakevicius AJ, Rodrigues CR (2017) Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain. Med Biol Eng Comput 55(2):343\u2013352. https:\/\/doi.org\/10.1007\/s11517-016-1519-4","journal-title":"Med Biol Eng Comput"},{"key":"2597_CR45","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1016\/j.cmpb.2016.12.015","volume":"140","author":"AR Hassan","year":"2017","unstructured":"Hassan AR, Bhuiyan MIH (2017) Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting. Comput Methods Prog Biomed 140:201\u2013210. https:\/\/doi.org\/10.1016\/j.cmpb.2016.12.015","journal-title":"Comput Methods Prog Biomed"},{"key":"2597_CR46","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.bspc.2015.09.002","volume":"24","author":"AR Hassan","year":"2016","unstructured":"Hassan AR, Bhuiyan MIH (2016) Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating. Biomed Signal Process Control 24:1\u201310. https:\/\/doi.org\/10.1016\/j.bspc.2015.09.002","journal-title":"Biomed Signal Process Control"},{"issue":"6","key":"2597_CR47","doi-asserted-by":"publisher","first-page":"1813","DOI":"10.1109\/JBHI.2014.2303991","volume":"18","author":"G Zhu","year":"2014","unstructured":"Zhu G, Li Y, Wen P (2014) Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE J Biomed Health Inform 18(6):1813\u20131821. https:\/\/doi.org\/10.1109\/JBHI.2014.2303991","journal-title":"IEEE J Biomed Health Inform"},{"key":"2597_CR48","doi-asserted-by":"publisher","first-page":"58","DOI":"10.1016\/j.compbiomed.2018.04.025","volume":"98","author":"M Sharma","year":"2018","unstructured":"Sharma M, Goyal D, Achuth PV, Acharya UR (2018) An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank. Comput Biol Med 98:58\u201375. https:\/\/doi.org\/10.1016\/j.compbiomed.2018.04.025","journal-title":"Comput Biol Med"},{"issue":"11","key":"2597_CR49","doi-asserted-by":"publisher","first-page":"1826","DOI":"10.1016\/S1388-2457(02)00284-5","volume":"113","author":"C Navona","year":"2002","unstructured":"Navona C, Barcaro U, Bonanni E, Di Martino F, Maestri M, Murri L (2002) An automatic method for the recognition and classification of the A-phases of the cyclic alternating pattern. Clin Neurophysiol 113(11):1826\u20131831. https:\/\/doi.org\/10.1016\/S1388-2457(02)00284-5","journal-title":"Clin Neurophysiol"},{"issue":"9","key":"2597_CR50","doi-asserted-by":"publisher","first-page":"1815","DOI":"10.1016\/j.clinph.2013.04.005","volume":"124","author":"S Mariani","year":"2013","unstructured":"Mariani S, Grassi A, Mendez MO, Milioli G, Parrino L, Terzano MG, Bianchi AM (2013) EEG segmentation for improving automatic CAP detection. Clin Neurophysiol 124(9):1815\u20131823. https:\/\/doi.org\/10.1016\/j.clinph.2013.04.005","journal-title":"Clin Neurophysiol"},{"issue":"4","key":"2597_CR51","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1007\/s11517-012-0881-0","volume":"50","author":"S Mariani","year":"2012","unstructured":"Mariani S, Manfredini E, Rosso V, Grassi A, Mendez MO, Alba A, Matteucci M, Parrino L, Terzano MG, Cerutti S, Bianchi AM (2012) Efficient automatic classifiers for the detection of a phases of the cyclic alternating pattern in sleep. Med Biol Eng Comput 50(4):359\u2013372. https:\/\/doi.org\/10.1007\/s11517-012-0881-0","journal-title":"Med Biol Eng Comput"},{"key":"2597_CR52","doi-asserted-by":"publisher","unstructured":"Mendon\u00e7a F, Fred A, Mostafa SS, Morgado-Dias F, Ravelo-Garc\u00eda AG (2018) Automatic detection of cyclic alternating pattern. Neural Comput Appl. https:\/\/doi.org\/10.1007\/s00521-018-3474-5","DOI":"10.1007\/s00521-018-3474-5"},{"key":"2597_CR53","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.cmpb.2018.04.005","volume":"161","author":"O Faust","year":"2018","unstructured":"Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR (2018) Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Prog Biomed 161:1\u201313. https:\/\/doi.org\/10.1016\/j.cmpb.2018.04.005","journal-title":"Comput Methods Prog Biomed"},{"key":"2597_CR54","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1016\/j.cmpb.2019.04.032","volume":"176","author":"O Faust","year":"2019","unstructured":"Faust O, Razaghi H, Barika R, Ciaccio EJ, Acharya UR (2019) A review of automated sleep stage scoring based on physiological signals for the new millennia. Comput Methods Prog Biomed 176:81\u201391. https:\/\/doi.org\/10.1016\/j.cmpb.2019.04.032","journal-title":"Comput Methods Prog Biomed"},{"issue":"2","key":"2597_CR55","doi-asserted-by":"publisher","first-page":"87","DOI":"10.3390\/genes10020087","volume":"10","author":"B Mirza","year":"2019","unstructured":"Mirza B, Wang W, Wang J, Choi H, Chung NC, Ping P (2019) Machine learning and integrative analysis of biomedical big data. Genes (Basel) 10(2):87. https:\/\/doi.org\/10.3390\/genes10020087","journal-title":"Genes (Basel)"},{"key":"2597_CR56","doi-asserted-by":"crossref","unstructured":"Shoeibi A, Ghassemi N, Khodatars M, Jafari M, Hussain S, Alizadehsani R, Moridian P, Khosravi A, Hosseini-Nejad H, Rouhani M, Zare A, Khadem A, Nahavandi S, Atiya AF, Acharya UR (2020) Epileptic seizure detection using deep learning techniques: A Review. http:\/\/arxiv.org\/abs\/2007.01276","DOI":"10.3390\/ijerph18115780"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02597-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-021-02597-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02597-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,2,10]],"date-time":"2022-02-10T05:19:03Z","timestamp":1644470343000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-021-02597-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,24]]},"references-count":56,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2022,2]]}},"alternative-id":["2597"],"URL":"https:\/\/doi.org\/10.1007\/s10489-021-02597-8","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,6,24]]},"assertion":[{"value":"5 June 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 June 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflicts of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}