{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T15:49:56Z","timestamp":1725032996753},"reference-count":60,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2021,1,7]],"date-time":"2021-01-07T00:00:00Z","timestamp":1609977600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,7]],"date-time":"2021-01-07T00:00:00Z","timestamp":1609977600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1007\/s10489-020-02073-9","type":"journal-article","created":{"date-parts":[[2021,1,7]],"date-time":"2021-01-07T12:03:36Z","timestamp":1610021016000},"page":"5200-5218","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Feature weighting to tackle label dependencies in multi-label stacking nearest neighbor"],"prefix":"10.1007","volume":"51","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0972-8503","authenticated-orcid":false,"given":"Niloofar","family":"Rastin","sequence":"first","affiliation":[]},{"given":"Mansoor Zolghadri","family":"Jahromi","sequence":"additional","affiliation":[]},{"given":"Mohammad","family":"Taheri","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,1,7]]},"reference":[{"key":"2073_CR1","doi-asserted-by":"crossref","unstructured":"Godbole S, Sarawagi S (2004) Discriminative methods for multi-labeled classification. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 22\u201330","DOI":"10.1007\/978-3-540-24775-3_5"},{"issue":"8","key":"2073_CR2","doi-asserted-by":"publisher","first-page":"1819","DOI":"10.1109\/TKDE.2013.39","volume":"26","author":"M-L Zhang","year":"2014","unstructured":"Zhang M-L, Zhou Z-H (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819\u20131837","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"10","key":"2073_CR3","first-page":"127","volume":"7","author":"R Alazaidah","year":"2016","unstructured":"Alazaidah R, Ahmad FK (2016) Trending challenges in multi label classification. Int J Adv Comput Sci Appl 7(10):127\u2013131","journal-title":"Int J Adv Comput Sci Appl"},{"key":"2073_CR4","volume-title":"Emerging trends in expert applications and security: Proceedings of iceteas 2018, vol 841","author":"VS Rathore","year":"2018","unstructured":"Rathore V S, Worring M, Mishra D K, Joshi A, Maheshwari S (2018) Emerging trends in expert applications and security: Proceedings of iceteas 2018, vol 841. Springer, Berlin"},{"key":"2073_CR5","doi-asserted-by":"crossref","unstructured":"Tsoumakas G, Katakis I, Vlahavas I (2009) Mining multi-label data. In: Data mining and knowledge discovery handbook. Springer, pp 667\u2013685","DOI":"10.1007\/978-0-387-09823-4_34"},{"key":"2073_CR6","doi-asserted-by":"crossref","unstructured":"Zhang M-L, Zhang K (2010) Multi-label learning by exploiting label dependency. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 999\u20131008","DOI":"10.1145\/1835804.1835930"},{"key":"2073_CR7","doi-asserted-by":"crossref","unstructured":"De Comit\u00e9 F, Gilleron R, Tommasi M (2003) Learning multi-label alternating decision trees from texts and data. In: International workshop on machine learning and data mining in pattern recognition. Springer, pp 35\u201349","DOI":"10.1007\/3-540-45065-3_4"},{"issue":"7","key":"2073_CR8","doi-asserted-by":"publisher","first-page":"2038","DOI":"10.1016\/j.patcog.2006.12.019","volume":"40","author":"M-L Zhang","year":"2007","unstructured":"Zhang M-L, Zhou Z-H (2007) ML-KNN: A lazy learning approach to multi-label learning. Pattern Recogn 40(7):2038\u20132048","journal-title":"Pattern Recogn"},{"issue":"2-3","key":"2073_CR9","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1023\/A:1007649029923","volume":"39","author":"RE Schapire","year":"2000","unstructured":"Schapire R E, Singer Y (2000) BoosTexter: A boosting-based system for text categorization. Mach Learn 39(2-3):135\u2013168","journal-title":"Mach Learn"},{"issue":"2","key":"2073_CR10","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1007\/s10994-008-5064-8","volume":"73","author":"J F\u00fcrnkranz","year":"2008","unstructured":"F\u00fcrnkranz J, H\u00fcllermeier E, Menc\u2216\u2019\u2216ia E L, Brinker K (2008) Multilabel classification via calibrated label ranking. Mach Learn 73 (2):133\u2013153","journal-title":"Mach Learn"},{"issue":"3","key":"2073_CR11","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1007\/s10994-011-5256-5","volume":"85","author":"J Read","year":"2011","unstructured":"Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn 85(3):333","journal-title":"Mach Learn"},{"key":"2073_CR12","doi-asserted-by":"crossref","unstructured":"Cheng Z, Zeng Z (2020) Joint label-specific features and label correlation for multi-label learning with missing label. Appl Intell 1\u201321","DOI":"10.1007\/s10489-020-01715-2"},{"key":"2073_CR13","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1016\/j.neunet.2018.09.003","volume":"108","author":"G Wu","year":"2018","unstructured":"Wu G, Tian Y, Liu D (2018) Cost-sensitive multi-label learning with positive and negative label pairwise correlations. Neural Netw 108:411\u2013423","journal-title":"Neural Netw"},{"issue":"1-2","key":"2073_CR14","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1007\/s10994-012-5285-8","volume":"88","author":"K Dembczy\u0144ski","year":"2012","unstructured":"Dembczy\u0144ski K, Waegeman W, Cheng W, H\u00fcllermeier E (2012) On label dependence and loss minimization in multi-label classification. Mach Learn 88(1-2):5\u201345","journal-title":"Mach Learn"},{"key":"2073_CR15","unstructured":"Tsoumakas G, Dimou A, Spyromitros E, Mezaris V, Kompatsiaris I, Vlahavas I (2009) Correlation-based pruning of stacked binary relevance models for multi-label learning. In: Proceedings of the 1st International Workshop on Learning from Multi-label Data, pp 101\u2013116"},{"issue":"1","key":"2073_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10994-012-5312-9","volume":"91","author":"L Chekina","year":"2013","unstructured":"Chekina L, Gutfreund D, Kontorovich A, Rokach L, Shapira B (2013) Exploiting label dependencies for improved sample complexity. Mach Learn 91(1):1\u201342","journal-title":"Mach Learn"},{"issue":"9","key":"2073_CR17","doi-asserted-by":"publisher","first-page":"2480","DOI":"10.1109\/TKDE.2015.2416731","volume":"27","author":"A Alali","year":"2015","unstructured":"Alali A, Kubat M (2015) Prudent: A pruned and confident stacking approach for multi-label classification. IEEE Trans Knowl Data Eng 27(9):2480\u20132493","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"2073_CR18","unstructured":"Huang S-J, Zhou Z-H (2012) Multi-label learning by exploiting label correlations locally. In: Twenty-sixth AAAI conference on artificial intelligence"},{"key":"2073_CR19","doi-asserted-by":"publisher","first-page":"148","DOI":"10.1016\/j.knosys.2018.07.003","volume":"159","author":"J Zhang","year":"2018","unstructured":"Zhang J, Li C, Cao D, Lin Y, Su S, Dai L, Li S (2018) Multi-label learning with label-specific features by resolving label correlations. Knowl-Based Syst 159:148\u2013157","journal-title":"Knowl-Based Syst"},{"key":"2073_CR20","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.neucom.2014.08.091","volume":"163","author":"F Charte","year":"2015","unstructured":"Charte F, Rivera AJ, del Jesus MJ, Herrera F (2015) Addressing imbalance in multilabel classification: Measures and random resampling algorithms. Neurocomputing 163:3\u201316","journal-title":"Neurocomputing"},{"key":"2073_CR21","doi-asserted-by":"publisher","first-page":"385","DOI":"10.1016\/j.knosys.2015.07.019","volume":"89","author":"F Charte","year":"2015","unstructured":"Charte F, Rivera AJ, del Jesus MJ, Herrera F (2015) Mlsmote: Approaching imbalanced multilabel learning through synthetic instance generation. Knowl-Based Syst 89:385\u2013397","journal-title":"Knowl-Based Syst"},{"issue":"10","key":"2073_CR22","doi-asserted-by":"publisher","first-page":"3577","DOI":"10.1007\/s10489-018-1156-8","volume":"48","author":"M Ding","year":"2018","unstructured":"Ding M, Yang Y, Lan Z (2018) Multi-label imbalanced classification based on assessments of cost and value. Appl Intell 48(10):3577\u20133590","journal-title":"Appl Intell"},{"key":"2073_CR23","unstructured":"Spyromitros-Xioufis E, Spiliopoulou M, Tsoumakas G, Vlahavas I (2011) Dealing with concept drift and class imbalance in multi-label stream classification. Department of Computer Science, Aristotle University of Thessaloniki"},{"issue":"2","key":"2073_CR24","doi-asserted-by":"publisher","first-page":"876","DOI":"10.1016\/j.patcog.2011.08.007","volume":"45","author":"JR Quevedo","year":"2012","unstructured":"Quevedo J R, Luaces O, Bahamonde A (2012) Multilabel classifiers with a probabilistic thresholding strategy. Pattern Recogn 45(2):876\u2013883","journal-title":"Pattern Recogn"},{"issue":"7","key":"2073_CR25","doi-asserted-by":"publisher","first-page":"2055","DOI":"10.1016\/j.patcog.2013.01.012","volume":"46","author":"I Pillai","year":"2013","unstructured":"Pillai I, Fumera G, Roli F (2013) Threshold optimisation for multi-label classifiers. Pattern Recogn 46(7):2055\u20132065","journal-title":"Pattern Recogn"},{"key":"2073_CR26","unstructured":"Petterson J, Caetano T S (2010) Reverse multi-label learning. In: Advances in neural information processing systems, pp 1912\u20131920"},{"key":"2073_CR27","unstructured":"Dembczynski K, Jachnik A, Kotlowski W, Waegeman W, H\u00fcllermeier E (2013) Optimizing the f-measure in multi-label classification: Plug-in rule approach versus structured loss minimization. In: International conference on machine learning, pp 1130\u20131138"},{"key":"2073_CR28","doi-asserted-by":"crossref","unstructured":"Wu B, Lyu S, Ghanem B (2016) Constrained submodular minimization for missing labels and class imbalance in multi-label learning.. In: AAAI, pp 2229\u20132236","DOI":"10.1609\/aaai.v30i1.10186"},{"issue":"7","key":"2073_CR29","doi-asserted-by":"publisher","first-page":"1100","DOI":"10.1109\/TPAMI.2006.145","volume":"28","author":"R Paredes","year":"2006","unstructured":"Paredes R, Vidal E (2006) Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Trans Pattern Anal Mach Intell 28(7):1100\u20131110. https:\/\/doi.org\/10.1109\/TPAMI.2006.145","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"2","key":"2073_CR30","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1016\/j.patcog.2005.06.001","volume":"39","author":"R Paredes","year":"2006","unstructured":"Paredes R, Vidal E (2006) Learning prototypes and distances: A prototype reduction technique based on nearest neighbor error minimization. Pattern Recogn 39(2):180\u2013188","journal-title":"Pattern Recogn"},{"issue":"17","key":"2073_CR31","doi-asserted-by":"publisher","first-page":"2964","DOI":"10.1016\/j.ins.2009.04.012","volume":"179","author":"MZ Jahromi","year":"2009","unstructured":"Jahromi MZ, Parvinnia E, John R (2009) A method of learning weighted similarity function to improve the performance of nearest neighbor. Inf Sci 179(17):2964\u20132973","journal-title":"Inf Sci"},{"key":"2073_CR32","doi-asserted-by":"crossref","unstructured":"Rastin N, Jahromi MZ, Taheri M (2020) A generalized weighted distance k-nearest neighbor for multi-label problems. Pattern Recogn 107526","DOI":"10.1016\/j.patcog.2020.107526"},{"key":"2073_CR33","unstructured":"Zhang Q-W, Zhong Y, Zhang M-L (2018) Feature-induced labeling information enrichment for multi-label learning.. In: AAAI, pp 4446\u20134453"},{"key":"2073_CR34","unstructured":"Dembczy K (2010) Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th international conference on machine learning, pp 279\u2013286"},{"key":"2073_CR35","doi-asserted-by":"crossref","unstructured":"Qi G-J, Hua X-S, Rui Y, Tang J, Mei T, Zhang H-J (2007) Correlative multi-label video annotation categories and subject descriptors. Context","DOI":"10.1145\/1291233.1291245"},{"issue":"2","key":"2073_CR36","doi-asserted-by":"publisher","first-page":"335","DOI":"10.1109\/TASL.2008.2008734","volume":"17","author":"F Pachet","year":"2009","unstructured":"Pachet F, Roy P (2009) Improving multilabel analysis of music titles: A large-scale validation of the correction approach. IEEE Trans Audio Speech Lang Process 17(2):335\u2013343. https:\/\/doi.org\/10.1109\/TASL.2008.2008734","journal-title":"IEEE Trans Audio Speech Lang Process"},{"issue":"3","key":"2073_CR37","doi-asserted-by":"publisher","first-page":"1494","DOI":"10.1016\/j.patcog.2013.09.029","volume":"47","author":"E Monta\u00f1es","year":"2013","unstructured":"Monta\u00f1es E, Senge R, Barranquero J, Ram\u00f3n Quevedo J, Jos\u00e9 del Coz J, H\u00fcllermeier E (2013) Dependent binary relevance models for multi-label classification. Pattern Recogn 47(3):1494\u20131508. https:\/\/doi.org\/10.1016\/j.patcog.2013.09.029","journal-title":"Pattern Recogn"},{"issue":"2","key":"2073_CR38","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1007\/s11704-017-7031-7","volume":"12","author":"M-L Zhang","year":"2018","unstructured":"Zhang M-L, Li Y-K, Liu X-Y, Geng X (2018) Binary relevance for multi-label learning: an overview. Front Comput Sci 12(2):191\u2013202","journal-title":"Front Comput Sci"},{"key":"2073_CR39","doi-asserted-by":"crossref","unstructured":"Chen Y-N, Weng W, Wu S-X, Chen B-H, Fan Y-L, Liu J-H (2020) An efficient stacking model with label selection for multi-label classification. Appl Intell 1\u201318","DOI":"10.1007\/s10489-020-01807-z"},{"issue":"2-3","key":"2073_CR40","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s10994-009-5127-5","volume":"76","author":"W Cheng","year":"2009","unstructured":"Cheng W, H\u00fcllermeier E (2009) Combining instance-based learning and logistic regression for multilabel classification. Mach Learn 76(2-3):211\u2013225","journal-title":"Mach Learn"},{"key":"2073_CR41","doi-asserted-by":"crossref","unstructured":"Rastin N, Jahromi MZ, Taheri M (2017) Multi-label classification systems by the use of supervised clustering. In: Artificial intelligence and signal processing conference (AISP), 2017. IEEE, pp 246\u2013249","DOI":"10.1109\/AISP.2017.8324090"},{"issue":"8","key":"2073_CR42","doi-asserted-by":"publisher","first-page":"1819","DOI":"10.1109\/TKDE.2013.39","volume":"26","author":"M-L Zhang","year":"2013","unstructured":"Zhang M-L, Zhou Z-H (2013) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819\u20131837","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"2073_CR43","volume-title":"Distribution-free tests","author":"HR Neave","year":"1988","unstructured":"Neave HR, Worthington PL (1988) Distribution-free tests. Unwin Hyman, London"},{"issue":"Jul","key":"2073_CR44","first-page":"2411","volume":"12","author":"G Tsoumakas","year":"2011","unstructured":"Tsoumakas G, Spyromitros-Xioufis E, Vilcek J, Vlahavas I (2011) Mulan: A java library for multi-label learning. J Mach Learn Res 12(Jul):2411\u20132414","journal-title":"J Mach Learn Res"},{"key":"2073_CR45","unstructured":"Younes Z, Abdallah F, Den\u0153ux T (2008) Multi-label classification algorithm derived from k-nearest neighbor rule with label dependencies. In: Signal Processing Conference, 2008 16th European. IEEE, pp 1\u20135"},{"key":"2073_CR46","doi-asserted-by":"crossref","unstructured":"Xu J (2011) Multi-label weighted k-nearest neighbor classifier with adaptive weight estimation. In: International conference on neural information processing. Springer, pp 79\u201388","DOI":"10.1007\/978-3-642-24958-7_10"},{"key":"2073_CR47","doi-asserted-by":"crossref","unstructured":"Spyromitros E, Tsoumakas G, Vlahavas I (2008) An empirical study of lazy multilabel classification algorithms. In: Hellenic conference on artificial intelligence. Springer, pp 401\u2013406","DOI":"10.1007\/978-3-540-87881-0_40"},{"key":"2073_CR48","unstructured":"Kimura K, Sun L, Kudo M (2017) Mlc toolbox: A matlab\/octave library for multi-label classification. arXiv:1704.02592"},{"key":"2073_CR49","doi-asserted-by":"crossref","unstructured":"Sun L, Kudo M, Kimura K (2016) Multi-label classification with meta-label-specific features. In: Pattern Recognition (ICPR), 2016 23rd International conference on. IEEE, pp 1612\u20131617","DOI":"10.1109\/ICPR.2016.7899867"},{"key":"2073_CR50","doi-asserted-by":"publisher","first-page":"24","DOI":"10.1016\/j.neunet.2019.10.002","volume":"122","author":"G Wu","year":"2020","unstructured":"Wu G, Zheng R, Tian Y, Liu D (2020) Joint ranking svm and binary relevance with robust low-rank learning for multi-label classification. Neural Netw 122:24\u201339","journal-title":"Neural Netw"},{"key":"2073_CR51","unstructured":"Shu S, Lv F, Feng L, Huang J, He S, He J, Li L (2020) Incorporating multiple cluster centers for multi-label learning. arXiv:2004.08113"},{"key":"2073_CR52","unstructured":"Asuncion A, Newman D (2007) Uci machine learning repository"},{"key":"2073_CR53","unstructured":"Alcal\u00e1-Fdez J, Fern\u00e1ndez A, Luengo J, Derrac J, Garc\u00eda S, S\u00e1nchez L, Herrera F (2011) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Mult-Valued Logic Soft Comput 17"},{"key":"2073_CR54","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1016\/j.knosys.2018.05.037","volume":"158","author":"J Bi","year":"2018","unstructured":"Bi J, Zhang C (2018) An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme. Knowl-Based Syst 158:81\u201393","journal-title":"Knowl-Based Syst"},{"key":"2073_CR55","doi-asserted-by":"crossref","unstructured":"Liu X-Y, Li Q-Q, Zhou Z-H (2013) Learning imbalanced multi-class data with optimal dichotomy weights. In: 2013 IEEE 13th international conference on data mining. IEEE, pp 478\u2013487","DOI":"10.1109\/ICDM.2013.51"},{"key":"2073_CR56","doi-asserted-by":"crossref","unstructured":"Ghanem AS, Venkatesh S, West G (2010) Multi-class pattern classification in imbalanced data. In: 2010 20th international conference on pattern recognition. IEEE, pp 2881\u20132884","DOI":"10.1109\/ICPR.2010.706"},{"key":"2073_CR57","doi-asserted-by":"crossref","unstructured":"Wang S, Chen H, Yao X (2010) Negative correlation learning for classification ensembles. In: The 2010 International joint conference on neural networks (IJCNN). IEEE, pp 1\u20138","DOI":"10.1109\/IJCNN.2010.5596702"},{"key":"2073_CR58","doi-asserted-by":"crossref","unstructured":"Hoens TR, Qian Q, Chawla NV, Zhou Z-H (2012) Building decision trees for the multi-class imbalance problem. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, pp 122\u2013134","DOI":"10.1007\/978-3-642-30217-6_11"},{"issue":"5","key":"2073_CR59","doi-asserted-by":"publisher","first-page":"1622","DOI":"10.1109\/TFUZZ.2014.2371472","volume":"23","author":"E Ramentol","year":"2014","unstructured":"Ramentol E, Vluymans S, Verbiest N, Caballero Y, Bello R, Cornelis C, Herrera F (2014) Ifrowann: imbalanced fuzzy-rough ordered weighted average nearest neighbor classification. IEEE Trans Fuzzy Syst 23(5):1622\u20131637","journal-title":"IEEE Trans Fuzzy Syst"},{"key":"2073_CR60","unstructured":"Dietterich TG, Bakiri G (1991) Error-correcting output codes: A general method for improving multiclass inductive learning programs. In: AAAI. Citeseer, pp 572\u2013577"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-020-02073-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-020-02073-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-020-02073-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,10]],"date-time":"2022-12-10T22:00:55Z","timestamp":1670709655000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-020-02073-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,7]]},"references-count":60,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2021,7]]}},"alternative-id":["2073"],"URL":"https:\/\/doi.org\/10.1007\/s10489-020-02073-9","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,1,7]]},"assertion":[{"value":"7 November 2020","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 January 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with Ethical Standards"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interests"}}]}}