{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T19:47:07Z","timestamp":1725997627078},"reference-count":61,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2021,1,5]],"date-time":"2021-01-05T00:00:00Z","timestamp":1609804800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,5]],"date-time":"2021-01-05T00:00:00Z","timestamp":1609804800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1007\/s10489-020-02067-7","type":"journal-article","created":{"date-parts":[[2021,1,5]],"date-time":"2021-01-05T06:08:41Z","timestamp":1609826921000},"page":"4682-4713","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["A high speed roller dung beetles clustering algorithm and its architecture for real-time image segmentation"],"prefix":"10.1007","volume":"51","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2079-9062","authenticated-orcid":false,"given":"Rahul","family":"Ratnakumar","sequence":"first","affiliation":[]},{"given":"Satyasai Jagannath","family":"Nanda","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,1,5]]},"reference":[{"issue":"2","key":"2067_CR1","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1007\/s40745-015-0040-1","volume":"2","author":"X Dongkuan","year":"2015","unstructured":"Dongkuan X, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data Sci 2(2):165\u2013193","journal-title":"Ann Data Sci"},{"key":"2067_CR2","doi-asserted-by":"publisher","first-page":"31883","DOI":"10.1109\/ACCESS.2019.2903568","volume":"7","author":"A Ahmad","year":"2019","unstructured":"Ahmad A, Khan SS (2019) Survey of state-of-the-art mixed data clustering algorithms. IEEE Access 7:31883\u201331902","journal-title":"IEEE Access"},{"key":"2067_CR3","doi-asserted-by":"crossref","unstructured":"Khan MF, Yau K-LA, Noor RMD, Imran MA (2020) Survey and taxonomy of clustering algorithms in 5g. J Netw Comput Appl 102539","DOI":"10.1016\/j.jnca.2020.102539"},{"key":"2067_CR4","doi-asserted-by":"crossref","unstructured":"Sharma R, Vashisht V, Singh U (2020) Soft computing paradigms based clustering in wireless sensor networks: A survey. In: Advances in data sciences, security and applications. Springer, pp 133\u2013159","DOI":"10.1007\/978-981-15-0372-6_11"},{"key":"2067_CR5","first-page":"87","volume":"103342","author":"DK Kotary","year":"2020","unstructured":"Kotary DK, Nanda SJ (2020) Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization. Eng Appl Artif Intel 103342:87","journal-title":"Eng Appl Artif Intel"},{"issue":"3","key":"2067_CR6","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1109\/TETC.2014.2330519","volume":"2","author":"A Fahad","year":"2014","unstructured":"Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya AY, Foufou S, Bouras A (2014) A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Trans Emerg Topics Comput 2(3):267\u2013279","journal-title":"IEEE Trans Emerg Topics Comput"},{"key":"2067_CR7","doi-asserted-by":"publisher","first-page":"596","DOI":"10.1016\/j.jvcir.2018.07.009","volume":"55","author":"S Wazarkar","year":"2018","unstructured":"Wazarkar S, Keshavamurthy BN (2018) A survey on image data analysis through clustering techniques for real world applications. J Vis Commun Image Represent 55:596\u2013626","journal-title":"J Vis Commun Image Represent"},{"key":"2067_CR8","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1016\/j.knosys.2015.04.012","volume":"84","author":"P Delias","year":"2015","unstructured":"Delias P, Doumpos M, Grigoroudis E, Manolitzas P, Matsatsinis N (2015) Supporting healthcare management decisions via robust clustering of event logs. Knowl.-Based Syst 84:203\u2013213","journal-title":"Knowl.-Based Syst"},{"key":"2067_CR9","doi-asserted-by":"publisher","first-page":"101739","DOI":"10.1016\/j.cose.2020.101739","volume":"92","author":"M Landauer","year":"2020","unstructured":"Landauer M, Skopik F, Wurzenberger M, Rauber A (2020) System log clustering approaches for cyber security applications: A survey. Comput Secur 92:101739","journal-title":"Comput Secur"},{"issue":"9","key":"2067_CR10","doi-asserted-by":"publisher","first-page":"1205","DOI":"10.1109\/TSMC.2015.2389768","volume":"45","author":"W Sheng","year":"2015","unstructured":"Sheng W, Chen S, Xiao G, Mao J, Zheng Y (2015) A biometric key generation method based on semisupervised data clustering. IEEE Trans Syst Man Cybern Syst 45(9):1205\u20131217","journal-title":"IEEE Trans Syst Man Cybern Syst"},{"key":"2067_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.swevo.2013.11.003","volume":"16","author":"SJ Nanda","year":"2014","unstructured":"Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1\u201318","journal-title":"Swarm Evol Comput"},{"key":"2067_CR12","doi-asserted-by":"publisher","first-page":"192","DOI":"10.1016\/j.asoc.2015.12.001","volume":"41","author":"A Jos\u00e9-Garc\u00eda","year":"2016","unstructured":"Jos\u00e9-Garc\u00eda A, G\u00f3mez-Flores W (2016) Automatic clustering using nature-inspired metaheuristics: A survey. Appl Soft Comput 41:192\u2013213","journal-title":"Appl Soft Comput"},{"issue":"8","key":"2067_CR13","doi-asserted-by":"publisher","first-page":"651","DOI":"10.1016\/j.patrec.2009.09.011","volume":"31","author":"K Anil","year":"2010","unstructured":"Anil K (2010) Jain. Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31 (8):651\u2013666","journal-title":"Pattern Recognit Lett"},{"issue":"1","key":"2067_CR14","doi-asserted-by":"publisher","first-page":"200","DOI":"10.1016\/j.eswa.2012.07.021","volume":"40","author":"M Emre Celebi","year":"2013","unstructured":"Emre Celebi M, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200\u2013210","journal-title":"Expert Syst Appl"},{"key":"2067_CR15","unstructured":"Ester M, Kriegel H-P, Sander J, Xu X (1996) Density-based spatial clustering of applications with noise. In: International conference on knowledge discovery and data mining, vol 240, p 6"},{"key":"2067_CR16","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1016\/j.datak.2014.11.004","volume":"95","author":"SJ Nanda","year":"2015","unstructured":"Nanda SJ, Panda G (2015) Design of computationally efficient density-based clustering algorithms. Data Knowl Eng 95 :23\u201338","journal-title":"Data Knowl Eng"},{"key":"2067_CR17","unstructured":"Bezdek JC, Boggavarapu S, Hall LO, Bensaid A (1994) Genetic algorithm guided clustering, IEEE"},{"key":"2067_CR18","doi-asserted-by":"crossref","unstructured":"Van der Merwe DW, Engelbrecht AP (2003) Data clustering using particle swarm optimization. In: The 2003 Congress on evolutionary computation CEC\u201903, vol 1. IEEE, p 2003","DOI":"10.1109\/CEC.2003.1299577"},{"issue":"3","key":"2067_CR19","doi-asserted-by":"publisher","first-page":"3229","DOI":"10.3233\/JIFS-191198","volume":"38","author":"D S\u00e1nchez","year":"2020","unstructured":"S\u00e1nchez D, Melin P, Castillo O (2020) Comparison of particle swarm optimization variants with fuzzy dynamic parameter adaptation for modular granular neural networks for human recognition. J Intell Fuzzy Syst 38(3):3229\u20133252","journal-title":"J Intell Fuzzy Syst"},{"issue":"1","key":"2067_CR20","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1016\/j.asoc.2008.03.002","volume":"9","author":"U Boryczka","year":"2009","unstructured":"Boryczka U (2009) Finding groups in data: Cluster analysis with ants. Appl Soft Comput 9 (1):61\u201370","journal-title":"Appl Soft Comput"},{"issue":"1","key":"2067_CR21","doi-asserted-by":"publisher","first-page":"652","DOI":"10.1016\/j.asoc.2009.12.025","volume":"11","author":"D Karaboga","year":"2011","unstructured":"Karaboga D, Ozturk C (2011) A novel clustering approach: Artificial bee colony (abc) algorithm. Applied Soft Comput 11(1):652\u2013657","journal-title":"Applied Soft Comput"},{"issue":"2","key":"2067_CR22","doi-asserted-by":"publisher","first-page":"342","DOI":"10.1016\/j.patrec.2010.09.013","volume":"32","author":"AJ Graaff","year":"2011","unstructured":"Graaff AJ, Engelbrecht AP (2011) Clustering data in an uncertain environment using an artificial immune system. Pattern Recogn Lett 32(2):342\u2013351","journal-title":"Pattern Recogn Lett"},{"key":"2067_CR23","doi-asserted-by":"crossref","unstructured":"Faris H, Mirjalili S, Aljarah I, Mafarja M, Heidari AA (2020) Salp swarm algorithm: theory, literature review, and application in extreme learning machines. In: Nature-inspired optimizers. Springer, pp 185\u2013199","DOI":"10.1007\/978-3-030-12127-3_11"},{"key":"2067_CR24","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1016\/j.procs.2017.09.100","volume":"115","author":"S Kapoor","year":"2017","unstructured":"Kapoor S, Zeya I, Singhal C, Nanda SJ (2017) A grey wolf optimizer based automatic clustering algorithm for satellite image segmentation. Procedia Comput Sci 115:415\u2013422","journal-title":"Procedia Comput Sci"},{"key":"2067_CR25","doi-asserted-by":"crossref","unstructured":"Nanda SJ, Sharma M, Panda A (2019) Clustering big datasets using orthogonal gray wolf optimizer. In: International conference on information technology (ICIT). IEEE, p 2019","DOI":"10.1109\/ICIT48102.2019.00069"},{"key":"2067_CR26","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.engappai.2016.08.013","volume":"56","author":"UP Shukla","year":"2016","unstructured":"Shukla UP, Nanda SJ (2016) Parallel social spider clustering algorithm for high dimensional datasets. Eng Appl Artif Intel 56:75\u201390","journal-title":"Eng Appl Artif Intel"},{"key":"2067_CR27","doi-asserted-by":"crossref","unstructured":"Jaiprakash KP, Nanda SJ (2019) Elephant herding algorithm for clustering. In: Recent developments in machine learning and data analytics. Springer, pp 317\u2013325","DOI":"10.1007\/978-981-13-1280-9_30"},{"key":"2067_CR28","doi-asserted-by":"publisher","first-page":"230","DOI":"10.1016\/j.asoc.2016.04.026","volume":"46","author":"R Jensi","year":"2016","unstructured":"Jensi R, Wiselin Jiji G (2016) An improved krill herd algorithm with global exploration capability for solving numerical function optimization problems and its application to data clustering. Appl Soft Comput 46:230\u2013245","journal-title":"Appl Soft Comput"},{"key":"2067_CR29","unstructured":"Ontiveros-Robles E, Melin P, Castillo O, Gonzalez J (2019) Design and fpga implementation of real-time edge detectors based on interval type-2 fuzzy systems. J Mult-Val Logic Soft Comput 33"},{"key":"2067_CR30","doi-asserted-by":"crossref","unstructured":"Rubio E, Castillo O, Valdez F, Melin P, Gonzalez CI, Martinez G (2017) An extension of the fuzzy possibilistic clustering algorithm using type-2 fuzzy logic techniques. In: Advances in Fuzzy Systems, p 2017","DOI":"10.1155\/2017\/7094046"},{"key":"2067_CR31","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-16615-0","volume-title":"Multiobjective genetic algorithms for clustering: applications in data mining and bioinformatics","author":"U Maulik","year":"2011","unstructured":"Maulik U, Bandyopadhyay S, Mukhopadhyay A (2011) Multiobjective genetic algorithms for clustering: applications in data mining and bioinformatics. Springer Science & Business Media, New York"},{"issue":"1","key":"2067_CR32","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1109\/TEVC.2006.877146","volume":"11","author":"J Handl","year":"2007","unstructured":"Handl J, Knowles J (2007) An evolutionary approach to multiobjective clustering. IEEE Trans Evol Comput 11(1): 56\u201376","journal-title":"IEEE Trans Evol Comput"},{"issue":"12","key":"2067_CR33","doi-asserted-by":"publisher","first-page":"4175","DOI":"10.1109\/TGRS.2009.2023666","volume":"47","author":"A Paoli","year":"2009","unstructured":"Paoli A, Melgani F, Pasolli E (2009) Clustering of hyperspectral images based on multiobjective particle swarm optimization. IEEE Trans Geosci Remote Sens 47(12):4175\u20134188","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"2067_CR34","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1016\/j.eswa.2016.02.009","volume":"55","author":"G Armano","year":"2016","unstructured":"Armano G, Farmani MR (2016) Multiobjective clustering analysis using particle swarm optimization. Expert Syst Appl 55 :184\u2013193","journal-title":"Expert Syst Appl"},{"key":"2067_CR35","doi-asserted-by":"publisher","first-page":"514","DOI":"10.1016\/j.neucom.2016.08.003","volume":"216","author":"A Kishor","year":"2016","unstructured":"Kishor A, Singh PK, Prakash J (2016) Nsabc: Non-dominated sorting based multi-objective artificial bee colony algorithm and its application in data clustering. Neurocomputing 216 :514\u2013533","journal-title":"Neurocomputing"},{"key":"2067_CR36","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1016\/j.asoc.2019.03.042","volume":"79","author":"R Gupta","year":"2019","unstructured":"Gupta R, Nanda SJ, Shukla UP (2019) Cloud detection in satellite images using multi-objective social spider optimization. Appl Soft Comput 79:203\u2013226","journal-title":"Appl Soft Comput"},{"key":"2067_CR37","doi-asserted-by":"crossref","unstructured":"Ratnakumar R, Nanda SJ (2016) A fsm based approach for efficient implementation of k-means algorithm. In: 2016 20th international symposium on VLSI design and test (VDAT). IEEE, pp 1\u20136","DOI":"10.1109\/ISVDAT.2016.8064848"},{"issue":"9","key":"2067_CR38","doi-asserted-by":"publisher","first-page":"11949","DOI":"10.1007\/s11042-018-6726-6","volume":"78","author":"R Ratnakumar","year":"2019","unstructured":"Ratnakumar R, Nanda SJ (2019) A low complexity hardware architecture of k-means algorithm for real-time satellite image segmentation. Multimed Tools Appl 78(9):11949\u201311981","journal-title":"Multimed Tools Appl"},{"issue":"4","key":"2067_CR39","doi-asserted-by":"publisher","first-page":"309","DOI":"10.1007\/s11554-007-0055-8","volume":"2","author":"T Saegusa","year":"2007","unstructured":"Saegusa T, Maruyama T (2007) An fpga implementation of real-time k-means clustering for color images. J Real-Time Image Proc 2(4):309\u2013318","journal-title":"J Real-Time Image Proc"},{"issue":"6","key":"2067_CR40","doi-asserted-by":"publisher","first-page":"957","DOI":"10.1109\/TVLSI.2009.2017543","volume":"18","author":"T-W Chen","year":"2009","unstructured":"Chen T-W, Chien S-Y (2009) Bandwidth adaptive hardware architecture of k-means clustering for video analysis. IEEE Trans Very Large Scale Integr VLSI Syst 18(6):957\u2013966","journal-title":"IEEE Trans Very Large Scale Integr VLSI Syst"},{"issue":"3","key":"2067_CR41","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1109\/JETCAS.2011.2165231","volume":"1","author":"T-W Chen","year":"2011","unstructured":"Chen T-W, Sun C-H, Hsiao-Hang S, Chien S-Y, Deguchi D, Ide I, Murase H (2011) Power-efficient hardware architecture of k-means clustering with bayesian-information-criterion processor for multimedia processing applications. IEEE J Emerg Sel Topics Circ Syst 1(3):357\u2013368","journal-title":"IEEE J Emerg Sel Topics Circ Syst"},{"issue":"4","key":"2067_CR42","doi-asserted-by":"publisher","first-page":"1568","DOI":"10.1109\/TVLSI.2016.2633543","volume":"25","author":"B Adapa","year":"2017","unstructured":"Adapa B, Biswas D, Bhardwaj S, Raghuraman S, Acharyya A, Maharatna K (2017) Coordinate rotation-based low complexity k-means clustering architecture. IEEE Trans Very Large Scale Integr VLSI Syst 25(4):1568\u20131572","journal-title":"IEEE Trans Very Large Scale Integr VLSI Syst"},{"key":"2067_CR43","doi-asserted-by":"crossref","unstructured":"Dias LA, Ferreira JC, Fernandes MAC (2020) Parallel implementation of k-means algorithm on fpga. IEEE Access","DOI":"10.1109\/ACCESS.2020.2976900"},{"key":"2067_CR44","doi-asserted-by":"crossref","unstructured":"Ratnakumar R, Nanda SJ (2019) A hardware architecture based on genetic clustering for color image segmentation. In: Soft computing for problem solving. Springer, pp 863\u2013876","DOI":"10.1007\/978-981-13-1592-3_69"},{"issue":"4","key":"2067_CR45","doi-asserted-by":"publisher","first-page":"699","DOI":"10.1109\/TIM.2007.913807","volume":"57","author":"P-Y Chen","year":"2008","unstructured":"Chen P-Y, Chen R-D, Chang Y-P, Shieh L-S, Malki HA (2008) Hardware implementation for a genetic algorithm. IEEE Trans Instrum Meas 57(4):699\u2013705","journal-title":"IEEE Trans Instrum Meas"},{"key":"2067_CR46","doi-asserted-by":"publisher","first-page":"1066","DOI":"10.1016\/j.asoc.2017.09.044","volume":"62","author":"M Peker","year":"2018","unstructured":"Peker M (2018) A fully customizable hardware implementation for general purpose genetic algorithms. Appl Soft Comput 62:1066\u20131076","journal-title":"Appl Soft Comput"},{"key":"2067_CR47","doi-asserted-by":"publisher","first-page":"347","DOI":"10.1016\/j.asoc.2012.12.034","volume":"14","author":"RM Calazan","year":"2014","unstructured":"Calazan RM, Nedjah N, Mourelle LM (2014) A hardware accelerator for particle swarm optimization. Appl Soft Comput 14:347\u2013356","journal-title":"Appl Soft Comput"},{"key":"2067_CR48","doi-asserted-by":"publisher","first-page":"68","DOI":"10.1016\/j.swevo.2014.06.005","volume":"19","author":"R Peesapati","year":"2014","unstructured":"Peesapati R, Anumandla KK, Kudikala S, Sabat SL (2014) Comparative study of system on chip based solution for floating and fixed point differential evolution algorithm. Swarm Evol Comput 19:68\u201381","journal-title":"Swarm Evol Comput"},{"key":"2067_CR49","doi-asserted-by":"crossref","unstructured":"Agbehadji IE, Millham R, Thakur S, Yang H, Addo H (2018) Visualization of frequently changed patterns based on the behaviour of dung beetles. In: International conference on soft computing in data science. Springer, pp 230\u2013245","DOI":"10.1007\/978-981-13-3441-2_18"},{"issue":"4","key":"2067_CR50","first-page":"397","volume":"20","author":"E Samadipoor","year":"2015","unstructured":"Samadipoor E, Ghasemi Arian A (2015) Cataract following corneal damage by dung beetle prongs: a case report. Bina J Ophthalmmol 20(4):397\u2013400","journal-title":"Bina J Ophthalmmol"},{"key":"2067_CR51","doi-asserted-by":"crossref","unstructured":"Hore A, Ziou D (2010) Image quality metrics: Psnr vs. ssim. In: 2010 20th International conference on pattern recognition. IEEE, pp 2366\u20132369","DOI":"10.1109\/ICPR.2010.579"},{"key":"2067_CR52","doi-asserted-by":"publisher","first-page":"543","DOI":"10.1016\/j.ins.2017.04.048","volume":"432","author":"L Xiao","year":"2018","unstructured":"Xiao L, Wang R, Dai B, Fang Y, Liu D, Tao W u (2018) Hybrid conditional random field based camera-lidar fusion for road detection. Inform Sci 432:543\u2013558","journal-title":"Inform Sci"},{"issue":"6","key":"2067_CR53","doi-asserted-by":"publisher","first-page":"1930","DOI":"10.1109\/TVLSI.2017.2661746","volume":"25","author":"S Abdel-Hafeez","year":"2017","unstructured":"Abdel-Hafeez S, Gordon-Ross A (2017) An efficient o (n) comparison-free sorting algorithm. IEEE Trans Very Large Scale Integr VLSI Syst 25(6):1930\u20131942","journal-title":"IEEE Trans Very Large Scale Integr VLSI Syst"},{"issue":"2","key":"2067_CR54","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1109\/TEVC.2003.820662","volume":"8","author":"JC Gallagher","year":"2004","unstructured":"Gallagher JC, Vigraham S, Kramer G (2004) A family of compact genetic algorithms for intrinsic evolvable hardware. IEEE Trans Evol Comput 8(2):111\u2013126","journal-title":"IEEE Trans Evol Comput"},{"key":"2067_CR55","unstructured":"Aporntewan C, Chongstitvatana P (2001) A hardware implementation of the compact genetic algorithm. In: Proceedings of the congress on evolutionary computation (IEEE Cat. No. 01TH8546), vol 1, p 2001"},{"issue":"4","key":"2067_CR56","doi-asserted-by":"publisher","first-page":"317","DOI":"10.1007\/BF00872135","volume":"3","author":"O G\u00fcnther","year":"1993","unstructured":"G\u00fcnther O, Hess G, Mutz M, Riekert W-F, Ruwwe T (1993) Reseda: a knowledge-based advisory system for remote sensing. Appl Intell 3(4):317\u2013341","journal-title":"Appl Intell"},{"issue":"03","key":"2067_CR57","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1142\/S1793431107000122","volume":"1","author":"F Yamazaki","year":"2007","unstructured":"Yamazaki F, Matsuoka M (2007) Remote sensing technologies in post-disaster damage assessment. Journal of Earthquake and Tsunami 1(03):193\u2013210","journal-title":"Journal of Earthquake and Tsunami"},{"issue":"5","key":"2067_CR58","first-page":"1769","volume":"66","author":"Y Lyu","year":"2018","unstructured":"Lyu Y, Bai L, Huang X (2018) Chipnet: Real-time lidar processing for drivable region segmentation on an fpga. IEEE Trans Circ Syst I 66(5):1769\u20131779. Regular Papers","journal-title":"IEEE Trans Circ Syst I"},{"key":"2067_CR59","doi-asserted-by":"crossref","unstructured":"Chen L, Yang J, Kong H (2017) Lidar-histogram for fast road and obstacle detection. In: IEEE International conference on robotics and automation (ICRA). IEEE, p 2017","DOI":"10.1109\/ICRA.2017.7989159"},{"key":"2067_CR60","doi-asserted-by":"crossref","unstructured":"Soquet N, Aubert D, Hautiere N (2007) Road segmentation supervised by an extended v-disparity algorithm for autonomous navigation. In: IEEE intelligent vehicles symposium. IEEE, p 2007","DOI":"10.1109\/IVS.2007.4290108"},{"key":"2067_CR61","doi-asserted-by":"crossref","unstructured":"Caltagirone L, Scheidegger S, Svensson L, Wahde M (2017) Fast lidar-based road detection using fully convolutional neural networks. In: 2017 IEEE intelligent vehicles symposium (iv). IEEE, pp 1019\u20131024","DOI":"10.1109\/IVS.2017.7995848"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-020-02067-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-020-02067-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-020-02067-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,27]],"date-time":"2022-10-27T04:14:23Z","timestamp":1666844063000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-020-02067-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,5]]},"references-count":61,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2021,7]]}},"alternative-id":["2067"],"URL":"https:\/\/doi.org\/10.1007\/s10489-020-02067-7","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,1,5]]},"assertion":[{"value":"5 November 2020","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 January 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}