{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,5]],"date-time":"2025-04-05T08:47:26Z","timestamp":1743842846632,"version":"3.37.3"},"reference-count":42,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2021,1,4]],"date-time":"2021-01-04T00:00:00Z","timestamp":1609718400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,1,4]],"date-time":"2021-01-04T00:00:00Z","timestamp":1609718400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61973219 and 61933007"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1007\/s10489-020-02066-8","type":"journal-article","created":{"date-parts":[[2021,1,4]],"date-time":"2021-01-04T06:02:51Z","timestamp":1609740171000},"page":"4453-4469","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":18,"title":["An improved multi-focus image fusion algorithm based on multi-scale weighted focus measure"],"prefix":"10.1007","volume":"51","author":[{"given":"Zhanhui","family":"Hu","sequence":"first","affiliation":[]},{"given":"Wei","family":"Liang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7402-6682","authenticated-orcid":false,"given":"Derui","family":"Ding","sequence":"additional","affiliation":[]},{"given":"Guoliang","family":"Wei","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,1,4]]},"reference":[{"key":"2066_CR1","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1016\/j.patcog.2018.02.005","volume":"79","author":"H Li","year":"2018","unstructured":"Li H, He X, Tao D, Tang Y, Wang R (2018) Joint medical image fusion, denoising and enhancement via discriminative low-rank sparse dictionaries learning. Pattern Recongn 79:130\u2013146","journal-title":"Pattern Recongn"},{"key":"2066_CR2","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1016\/j.inffus.2018.02.004","volume":"45","author":"J Ma","year":"2019","unstructured":"Ma J, Ma Y, Li C (2019) Infrared and visible image fusion methods and applications: a survey. Inf Fusion 45:153\u2013178","journal-title":"Inf Fusion"},{"key":"2066_CR3","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1016\/j.neucom.2016.11.051","volume":"226","author":"M Yin","year":"2017","unstructured":"Yin M, Duan P, Liu W, Liang X (2017) A novel infrared and visible image fusion algorithm based on shift-invariant dual-tree complex shearlet transform and sparse representation. Neurocomputing 226:182\u2013191","journal-title":"Neurocomputing"},{"key":"2066_CR4","doi-asserted-by":"publisher","first-page":"611","DOI":"10.1016\/j.ijleo.2018.06.093","volume":"171","author":"J Tian","year":"2018","unstructured":"Tian J, Liu G, Liu J (2018) Multi-focus image fusion based on edges and focused region extraction. Optik 171:611\u2013624","journal-title":"Optik"},{"key":"2066_CR5","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1016\/j.inffus.2018.07.010","volume":"48","author":"B Meher","year":"2019","unstructured":"Meher B, Agrawal S, Panda R, Abraham A (2019) A survey on region based image fusion methods. Inf Fusion 48:119\u2013132","journal-title":"Inf Fusion"},{"key":"2066_CR6","doi-asserted-by":"publisher","first-page":"204","DOI":"10.1016\/j.infrared.2015.09.018","volume":"73","author":"H Jin","year":"2015","unstructured":"Jin H, Xing B, Wang L, Wang Y (2015) Fusion of remote sensing images based on pyramid decomposition with Baldwinian Clonal Selection Optimization. Infrared Phys Technol 73 :204\u2013211","journal-title":"Infrared Phys Technol"},{"key":"2066_CR7","doi-asserted-by":"publisher","first-page":"287","DOI":"10.1016\/j.ijleo.2018.06.024","volume":"171","author":"Z Yang","year":"2018","unstructured":"Yang Z, Mu X, Zhao F (2018) Scene classification of remote sensing image based on deep network and multi-scale features fusion. Optik 171:287\u2013293","journal-title":"Optik"},{"issue":"4","key":"2066_CR8","doi-asserted-by":"publisher","first-page":"1086","DOI":"10.1007\/s10489-019-01579-1","volume":"50","author":"K Gupta","year":"2020","unstructured":"Gupta K, Walia GS, Sharma K (2020) Quality based adaptive score fusion approach for multimodal biometric system. Appl Intell 50(4):1086\u20131099","journal-title":"Appl Intell"},{"key":"2066_CR9","doi-asserted-by":"publisher","first-page":"100","DOI":"10.1016\/j.inffus.2016.05.004","volume":"33","author":"S Li","year":"2017","unstructured":"Li S, Kang X, Fang L, Hu J, Yin H (2017) Pixel-level image fusion: a survey of the state of the art. Inf Fusion 33:100\u2013112","journal-title":"Inf Fusion"},{"key":"2066_CR10","doi-asserted-by":"publisher","first-page":"107014","DOI":"10.1016\/j.patcog.2019.107014","volume":"97","author":"C Zhao","year":"2020","unstructured":"Zhao C, Wang X, Zuo W, Shen F, et al (2020) Similarity learning with joint transfer constraints for person re-identification. Pattern Recogn 97:107014","journal-title":"Pattern Recogn"},{"key":"2066_CR11","doi-asserted-by":"publisher","first-page":"220102","DOI":"10.1007\/s11432-019-2675-3","volume":"62","author":"C Zhao","year":"2019","unstructured":"Zhao C, Chen K, Zang D, Zhang Z, et al (2019) Uncertainty-optimized deep learning model for small-scale person re-identification. Sci China Inf Sci 62:220102","journal-title":"Sci China Inf Sci"},{"key":"2066_CR12","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1016\/j.patrec.2018.04.029","volume":"117","author":"C Zhao","year":"2018","unstructured":"Zhao C, Chen K, Wei Z, Chen Y, et al (2018) Multilevel triplet deep learning model for person re-identification. Pattern Recogn Lett 117:161\u2013168","journal-title":"Pattern Recogn Lett"},{"key":"2066_CR13","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1016\/j.inffus.2019.07.011","volume":"54","author":"Y Zhang","year":"2020","unstructured":"Zhang Y, Liu Y, Sun P, Yan H, et al (2020) IFCNN: A general image fusion framework based on convolutional neural network. Inf Fusion 54:99\u2013118","journal-title":"Inf Fusion"},{"issue":"4","key":"2066_CR14","doi-asserted-by":"publisher","first-page":"532","DOI":"10.1109\/TCOM.1983.1095851","volume":"31","author":"P Burt","year":"1983","unstructured":"Burt P, Adelson E (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532\u2013540","journal-title":"IEEE Trans Commun"},{"key":"2066_CR15","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1016\/j.inffus.2015.06.003","volume":"27","author":"W Zhao","year":"2016","unstructured":"Zhao W, Xu Z, Zhao J (2016) Gradient entropy metric and p-Laplace diffusion constraint-based algorithm for noisy multispectral image fusion. Inf Fusion 27:131\u2013142","journal-title":"Inf Fusion"},{"issue":"7","key":"2066_CR16","doi-asserted-by":"publisher","first-page":"1334","DOI":"10.1016\/j.sigpro.2009.01.012","volume":"89","author":"Q Zhang","year":"2009","unstructured":"Zhang Q, Guo BL (2009) Multifocus image fusion using the nonsubsampled contourlet transform. Signal Process 89(7):1334\u20131346","journal-title":"Signal Process"},{"issue":"3","key":"2066_CR17","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1006\/gmip.1995.1022","volume":"57","author":"H Li","year":"1995","unstructured":"Li H, Manjunath BS, Mitra SK (1995) Multisensor image fusion using the wavelet transform. Graph Mod Image Process 57(3):235\u2013245","journal-title":"Graph Mod Image Process"},{"issue":"2","key":"2066_CR18","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1016\/j.inffus.2005.09.006","volume":"8","author":"JJ Lewis","year":"2007","unstructured":"Lewis JJ, O\u2019Callaghan RJ, Nkiolov SG, Bull DR, Canagarajah N (2007) Pixel-and region-based image fusion with complex wavelets. Inf Fusion 8(2):119\u2013130","journal-title":"Inf Fusion"},{"issue":"4","key":"2066_CR19","doi-asserted-by":"publisher","first-page":"884","DOI":"10.1109\/TIM.2009.2026612","volume":"59","author":"B Yang","year":"2010","unstructured":"Yang B, Li S (2010) Multifocus image fusion and restoration with sparse representation. IEEE Trans Instrum Meas 59(4):884\u2013892","journal-title":"IEEE Trans Instrum Meas"},{"key":"2066_CR20","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1016\/j.inffus.2014.09.004","volume":"24","author":"Y Liu","year":"2015","unstructured":"Liu Y, Liu S, Wang Z (2015) A general framework for image fusion based on multi-scale transform and sparse representation. Inf Fusion 24:147\u2013164","journal-title":"Inf Fusion"},{"key":"2066_CR21","doi-asserted-by":"publisher","first-page":"125","DOI":"10.1016\/j.ins.2017.12.043","volume":"433-434","author":"H Tang","year":"2018","unstructured":"Tang H, Xiao B, Li W, Wang W (2018) Pixel convolutional neural network for multi-focus image fusion. Inf Sci 433-434:125\u2013141","journal-title":"Inf Sci"},{"issue":"2","key":"2066_CR22","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1016\/j.inffus.2005.09.001","volume":"8","author":"N Mitianoudis","year":"2007","unstructured":"Mitianoudis N, Stathaki T (2007) Pixel-based and region-based image fusion schemes using ICA bases. Inf Fusion 8(2):131\u2013142","journal-title":"Inf Fusion"},{"issue":"5","key":"2066_CR23","doi-asserted-by":"publisher","first-page":"2898","DOI":"10.1109\/TIP.2012.2183140","volume":"21","author":"J Liang","year":"2012","unstructured":"Liang J, He Y, Liu D, Zeng X (2012) Image fusion using higher order singular value decomposition. IEEE Trans Image Process 21(5):2898\u20132909","journal-title":"IEEE Trans Image Process"},{"issue":"4","key":"2066_CR24","doi-asserted-by":"publisher","first-page":"1121","DOI":"10.1016\/j.dsp.2013.03.001","volume":"23","author":"A Saha","year":"2013","unstructured":"Saha A, Bhatnagar G, Wu QMJ (2013) Mutual spectral residual approach for multifocus image fusion. Digit Signal Process 23(4):1121\u20131135","journal-title":"Digit Signal Process"},{"issue":"2","key":"2066_CR25","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1016\/j.inffus.2012.01.007","volume":"14","author":"I De","year":"2013","unstructured":"De I, Chanda B (2013) Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure. Inf Fusion 14(2):136\u2013146","journal-title":"Inf Fusion"},{"key":"2066_CR26","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1016\/j.inffus.2014.05.003","volume":"22","author":"X Bai","year":"2015","unstructured":"Bai X, Zhang Y, Zhou F, Xue B (2015) Quadtree-based multi-focus image fusion using a weighted focus-measure. Inf Fusion 22:105\u2013118","journal-title":"Inf Fusion"},{"key":"2066_CR27","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1016\/j.inffus.2016.09.006","volume":"35","author":"Y Zhang","year":"2017","unstructured":"Zhang Y, Bai X, Wang T (2017) Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure. Inf Fusion 35:81\u2013101","journal-title":"Inf Fusion"},{"key":"2066_CR28","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1016\/j.inffus.2014.05.004","volume":"23","author":"Y Liu","year":"2015","unstructured":"Liu Y, Liu S, Wang Z (2015) Multi-focus image fusion with dense SIFT. Inf Fusion 23:139\u2013155","journal-title":"Inf Fusion"},{"key":"2066_CR29","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.inffus.2013.11.005","volume":"20","author":"Z Zhou","year":"2014","unstructured":"Zhou Z, Li S, Wang B (2014) Multi-scale weighted gradient-based fusion for multi-focus image. Inf Fusion 20:60\u201372","journal-title":"Inf Fusion"},{"issue":"1","key":"2066_CR30","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1007\/s11063-016-9513-2","volume":"45","author":"Z Wang","year":"2017","unstructured":"Wang Z, Wang S, Zhu Y (2017) Multi-focus image fusion based on the improved PCNN and guided filter. Neural Process Lett 45(1):75\u201394","journal-title":"Neural Process Lett"},{"key":"2066_CR31","doi-asserted-by":"publisher","first-page":"1003","DOI":"10.1016\/j.ijleo.2017.11.162","volume":"157","author":"C Du","year":"2018","unstructured":"Du C, Gao S (2018) Multi-focus image fusion algorithm based on pulse coupled neural networks and modified decision map. Optik 157:1003\u20131015","journal-title":"Optik"},{"key":"2066_CR32","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1016\/j.inffus.2016.12.001","volume":"36","author":"Y Liu","year":"2017","unstructured":"Liu Y, Chen X, Peng H, Wang Z (2017) Multi-focus image fusion with a deep convolutional neural network. Inf Fusion 36 :191\u2013207","journal-title":"Inf Fusion"},{"key":"2066_CR33","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1016\/j.inffus.2019.02.003","volume":"51","author":"MA Naji","year":"2019","unstructured":"Naji MA, Aghagolzadeh A, Ezoji M (2019) Ensemble of CNN for multi-focus image fusion. Inf Fusion 51:201\u2013214","journal-title":"Inf Fusion"},{"issue":"4","key":"2066_CR34","doi-asserted-by":"publisher","first-page":"493","DOI":"10.1016\/j.patrec.2006.09.005","volume":"28","author":"W Huang","year":"2007","unstructured":"Huang W, Jing Z (2007) Evaluation of focus measures in multi-focus image fusion. Pattern Recogn Lett 28(4):493\u2013500","journal-title":"Pattern Recogn Lett"},{"issue":"8","key":"2066_CR35","doi-asserted-by":"publisher","first-page":"824","DOI":"10.1109\/34.308479","volume":"16","author":"SK Nayar","year":"1994","unstructured":"Nayar SK, Nakagawa Y (1994) Shape from focus. IEEE Trans Pattern Anal Mach Intell 16 (8):824\u2013831","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"2066_CR36","doi-asserted-by":"publisher","first-page":"526","DOI":"10.1007\/s10489-017-0916-1","volume":"47","author":"KT Ahmed","year":"2017","unstructured":"Ahmed K T, Trtaza A, Iqbal MA (2017) Fusion of local and global features for effective image extraction. Appl Intell 47:526\u2013543","journal-title":"Appl Intell"},{"key":"2066_CR37","doi-asserted-by":"publisher","first-page":"4615","DOI":"10.1007\/s10489-018-1239-6","volume":"48","author":"P Zhang","year":"2018","unstructured":"Zhang P, Gao W, Liu G (2018) Feature selection considering weighted relevancy. Appl Intell 48:4615\u20134625","journal-title":"Appl Intell"},{"key":"2066_CR38","doi-asserted-by":"crossref","unstructured":"He K, Sun J, Tang X (2010) Guided image filtering. In: European Conference on Computer Vision. Heraklion, Greece, pp 1\u201314","DOI":"10.1007\/978-3-642-15549-9_1"},{"issue":"7","key":"2066_CR39","doi-asserted-by":"publisher","first-page":"313","DOI":"10.1049\/el:20020212","volume":"38","author":"G Qu","year":"2002","unstructured":"Qu G, Zhang D, Yan P (2002) Information measure for performance of image fusion. Electron Lett 38(7):313","journal-title":"Electron Lett"},{"key":"2066_CR40","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"Z Wang","year":"2004","unstructured":"Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600\u2013612","journal-title":"IEEE Trans Image Process"},{"issue":"4","key":"2066_CR41","doi-asserted-by":"publisher","first-page":"1102","DOI":"10.1109\/TCSVT.2018.2821177","volume":"29","author":"W Zhao","year":"2019","unstructured":"Zhao W, Wang D, Lu H (2019) Multi-focus image fusion with a natural enhancement via joint multi-level deeply supervised convolutional neural network. IEEE Trans Circ Syst Video Technol 29(4):1102\u20131115","journal-title":"IEEE Trans Circ Syst Video Technol"},{"key":"2066_CR42","doi-asserted-by":"publisher","first-page":"3482","DOI":"10.1007\/s10489-018-1151-0","volume":"48","author":"IF Nizami","year":"2018","unstructured":"Nizami IF, Majid M, Khurshid K (2018) New feature selection algorithms for no-reference image quality assessment. Appl Intell 48:3482\u20133501","journal-title":"Appl Intell"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-020-02066-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-020-02066-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-020-02066-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,27]],"date-time":"2023-01-27T10:36:43Z","timestamp":1674815803000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-020-02066-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,4]]},"references-count":42,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2021,7]]}},"alternative-id":["2066"],"URL":"https:\/\/doi.org\/10.1007\/s10489-020-02066-8","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"type":"print","value":"0924-669X"},{"type":"electronic","value":"1573-7497"}],"subject":[],"published":{"date-parts":[[2021,1,4]]},"assertion":[{"value":"4 November 2020","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 January 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}