{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,25]],"date-time":"2024-08-25T15:25:39Z","timestamp":1724599539271},"reference-count":35,"publisher":"Springer Science and Business Media LLC","issue":"12","license":[{"start":{"date-parts":[[2020,7,28]],"date-time":"2020-07-28T00:00:00Z","timestamp":1595894400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,7,28]],"date-time":"2020-07-28T00:00:00Z","timestamp":1595894400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61772352"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Science and Technology Planning Project of Sichuan Province","award":["2019YFG0400"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2020,12]]},"DOI":"10.1007\/s10489-020-01798-x","type":"journal-article","created":{"date-parts":[[2020,7,28]],"date-time":"2020-07-28T09:03:34Z","timestamp":1595927014000},"page":"4602-4615","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":14,"title":["Twin labeled LDA: a supervised topic model for document classification"],"prefix":"10.1007","volume":"50","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4718-5922","authenticated-orcid":false,"given":"Wei","family":"Wang","sequence":"first","affiliation":[]},{"given":"Bing","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Yan","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Han","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Yaosen","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xinhua","family":"Suo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,7,28]]},"reference":[{"key":"1798_CR1","unstructured":"Asuncion AU, Welling M, Smyth P, Teh YW (2009) On smoothing and inference for topic models. In: UAI proceedings of the 25th conference on uncertainty in artificial intelligence, Montreal, QC, Canada, pp 27\u201334"},{"key":"1798_CR2","doi-asserted-by":"publisher","first-page":"859","DOI":"10.1007\/s10994-017-5689-6","volume":"107","author":"S Burkhardt","year":"2018","unstructured":"Burkhardt S, Kramer S (2018) Online multi-label dependency topic models for text classification. Mach Learn 107:859\u2013886","journal-title":"Mach Learn"},{"key":"1798_CR3","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1145\/3373464.3373474","volume":"21","author":"S Burkhardt","year":"2019","unstructured":"Burkhardt S, Kramer S (2019) A survey of multi-label topic models. ACM SIGKDD Explorations Newsletter 21:61\u201379","journal-title":"ACM SIGKDD Explorations Newsletter"},{"issue":"9","key":"1798_CR4","doi-asserted-by":"publisher","first-page":"1757","DOI":"10.1016\/j.patcog.2004.03.009","volume":"37","author":"MR Boutell","year":"2004","unstructured":"Boutell MR, Luo J, Shen X, Brown CM (2004) Learning multi-label scene classification. Pattern Recogn 37(9):1757\u20131771","journal-title":"Pattern Recogn"},{"key":"1798_CR5","unstructured":"Blei DM, McAuliffe JD (2008) Supervised topic models. Advances in Neural Information Processing Systems, pp 121\u2013128"},{"key":"1798_CR6","first-page":"993","volume":"3","author":"DM Blei","year":"2003","unstructured":"Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993\u20131022","journal-title":"J Mach Learn Res"},{"key":"1798_CR7","unstructured":"Cowans PJ (2006) Probabilistic document modeling. PhD thesis University of Cambridge, Cambridgeshire, UK"},{"key":"1798_CR8","doi-asserted-by":"crossref","unstructured":"Clare A, King RD (2001) Knowledge discovery in multi-label phenotype data. In: European conference on principles of data mining and knowledge discovery, pp 42\u201353","DOI":"10.1007\/3-540-44794-6_4"},{"key":"1798_CR9","first-page":"1025","volume":"3","author":"K Crammer","year":"2003","unstructured":"Crammer K, Singer Y (2003) A family of additive online algorithms for category ranking. J Mach Learn Res 3:1025\u20131058","journal-title":"J Mach Learn Res"},{"issue":"2","key":"1798_CR10","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1007\/s10994-008-5064-8","volume":"73","author":"J F\u00fcrnkranz","year":"2008","unstructured":"F\u00fcrnkranz J, H\u00fcllermeier E, Menc\u00eda EL, Brinker K (2008) Multilabel classification via calibrated label ranking. Mach Learn 73(2):133\u2013153","journal-title":"Mach Learn"},{"issue":"Suppl 1","key":"1798_CR11","doi-asserted-by":"publisher","first-page":"5228","DOI":"10.1073\/pnas.0307752101","volume":"101","author":"TL Griffiths","year":"2004","unstructured":"Griffiths TL, Steyvers M (2004) Finding scientific topics. PNAS 101(Suppl 1):5228\u20135235","journal-title":"PNAS"},{"key":"1798_CR12","doi-asserted-by":"crossref","unstructured":"Ji S, Tang L, Yu S, Ye J (2008) Extracting shared subspace for multi-label classification. In: KDD\u201908: proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 381\u2013389","DOI":"10.1145\/1401890.1401939"},{"issue":"11","key":"1798_CR13","doi-asserted-by":"publisher","first-page":"15169","DOI":"10.1007\/s11042-018-6894-4","volume":"78","author":"H Jelodar","year":"2019","unstructured":"Jelodar H, Wang Y, Yuan C, Feng X, Jiang X, Li Y (2019) Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimed Tools Appl 78(11):15169\u2013 15211","journal-title":"Multimed Tools Appl"},{"key":"1798_CR14","doi-asserted-by":"publisher","first-page":"324","DOI":"10.1016\/j.neucom.2018.05.077","volume":"312","author":"X Li","year":"2018","unstructured":"Li X, Ma Z, Peng P, Guo X, Huang F, Wang X, Guo J (2018) Supervised latent Dirichlet allocation with a mixture of sparse softmax. Neurocomputing 312:324\u2013335","journal-title":"Neurocomputing"},{"key":"1798_CR15","doi-asserted-by":"publisher","first-page":"811","DOI":"10.1016\/j.neucom.2014.07.053","volume":"149","author":"X Li","year":"2015","unstructured":"Li X, Ouyang J, Zhou X (2015) Supervised topic models for multi-label classification. Neurocomputing 149:811\u2013819","journal-title":"Neurocomputing"},{"key":"1798_CR16","doi-asserted-by":"publisher","first-page":"581","DOI":"10.1007\/s10489-014-0595-0","volume":"42","author":"X Li","year":"2015","unstructured":"Li X, Ouyang J, Zhou X, Lu Y, Liu Y (2015) Supervised labeled latent Dirichlet allocation for document categorization. Appl Intell 42:581\u2013593","journal-title":"Appl Intell"},{"key":"1798_CR17","unstructured":"Lacoste-Julien S, Sha F, Jordan MI (2009) Disclda: discriminative learning for dimensionality reduction and classification. In: Neural information processing systems, pp 897\u2013904"},{"key":"1798_CR18","first-page":"361","volume":"5","author":"DD Lewis","year":"2004","unstructured":"Lewis DD, Yang Y, Rose TG, Li F (2004) RCV1: a new benchmark collection for text categorization research. J Mach Learn Res 5:361\u2013397","journal-title":"J Mach Learn Res"},{"key":"1798_CR19","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1007\/s00180-019-00891-1","volume":"35","author":"M Magnusson","year":"2020","unstructured":"Magnusson M, Jonsson L, Villani M (2020) DOLDA: a regularized supervised topic model for high-dimensional multi-class regression. Comput Stat 35:175\u2013201","journal-title":"Comput Stat"},{"issue":"2","key":"1798_CR20","doi-asserted-by":"publisher","first-page":"52","DOI":"10.3390\/info8020052","volume":"8","author":"D Padmanabhan","year":"2017","unstructured":"Padmanabhan D, Bhat S, Shevade S, Narahari Y (2017) Multi-label classification from multiple noisy sources using topic models. Information 8(2):52\u201375","journal-title":"Information"},{"issue":"1\u20132","key":"1798_CR21","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1007\/s10994-011-5272-5","volume":"88","author":"TN Rubin","year":"2012","unstructured":"Rubin TN, Chambers A, Smyth P, Steyvers M (2012) Statistical topic models for multi-label document classification. Mach Learn 88(1\u20132):157\u2013208","journal-title":"Mach Learn"},{"key":"1798_CR22","doi-asserted-by":"crossref","unstructured":"Ramage D, Hall D, Nallapati R, Manning CD (2009) Labeled LDA: a supervised topic model for credit attribution in multilabeled corpora. In: Conference on empirical methods in natural language processing, Association for Computational Linguistics, pp 248\u2013256","DOI":"10.3115\/1699510.1699543"},{"key":"1798_CR23","doi-asserted-by":"crossref","unstructured":"Ramage D, Manning CD, Dumais S (2011) Partially labeled topic models for interpretable text mining. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 457\u2013465","DOI":"10.1145\/2020408.2020481"},{"key":"1798_CR24","unstructured":"Sandhaus E (2008) The New York times annotated corpus. Linguistic Data Consortium. Philadelphia"},{"key":"1798_CR25","doi-asserted-by":"crossref","unstructured":"Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. International Journal of Data Warehousing and Mining, pp 1\u201313","DOI":"10.4018\/jdwm.2007070101"},{"key":"1798_CR26","doi-asserted-by":"crossref","unstructured":"Tsoumakas G, Vlahavas I (2007) Random k-labelsets: an ensemble method for multilabel classification. In: European conference on machine learning, pp 406\u2013417","DOI":"10.1007\/978-3-540-74958-5_38"},{"key":"1798_CR27","unstructured":"Ueda N, Saito K (2002) Parametric mixture models for multi-labeled text. In: Advances in neural information processing systems, pp 721\u2013728"},{"key":"1798_CR28","unstructured":"Wallach HM (2008) Structured topic models for language. PhD thesis University of Cambridge, Cambridgeshire, UK"},{"key":"1798_CR29","first-page":"1973","volume":"23","author":"HM Wallach","year":"2009","unstructured":"Wallach HM, Mimno D, McCallum A (2009) Rethinking LDA: why priors matter. Advances in Neural Information Processing Systems 23:1973\u20131981","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"1\u20132","key":"1798_CR30","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1023\/A:1009982220290","volume":"1","author":"Y Yang","year":"1999","unstructured":"Yang Y (1999) An evaluation of statistical approaches to text categorization. Inf Retr 1(1\u20132):69\u201390","journal-title":"Inf Retr"},{"key":"1798_CR31","doi-asserted-by":"crossref","unstructured":"Yang Y, Zhang J, Kisiel B (2003) A scalability analysis of classifiers in text categorization. In: SIGIR\u201903, proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval, New York, pp 96\u2013103","DOI":"10.1145\/860435.860455"},{"key":"1798_CR32","doi-asserted-by":"crossref","unstructured":"Zhu J, Ahmed A, Xing E (2009) Medlda: maximum margin supervised topic models for regression and classification. In: ACM proceedings of the 26th annual international conference on machine learning, pp 1257\u20131264","DOI":"10.1145\/1553374.1553535"},{"key":"1798_CR33","doi-asserted-by":"crossref","unstructured":"Zhang Y, Ma J, Wang Z, Chen B (2018) LF-LDA: a topic model for multi-label classification. Advances in Internetworking, Data and Web Technologies, pp 618\u2013628","DOI":"10.1007\/978-3-319-59463-7_62"},{"issue":"7","key":"1798_CR34","doi-asserted-by":"publisher","first-page":"2038","DOI":"10.1016\/j.patcog.2006.12.019","volume":"40","author":"M Zhang","year":"2007","unstructured":"Zhang M, Zhou Z (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn 40(7):2038\u20132048","journal-title":"Pattern Recogn"},{"issue":"8","key":"1798_CR35","doi-asserted-by":"publisher","first-page":"1819","DOI":"10.1109\/TKDE.2013.39","volume":"26","author":"M Zhang","year":"2014","unstructured":"Zhang M, Zhou Z (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819\u20131837","journal-title":"IEEE Trans Knowl Data Eng"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-020-01798-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-020-01798-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-020-01798-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,7,27]],"date-time":"2021-07-27T23:35:57Z","timestamp":1627428957000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-020-01798-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7,28]]},"references-count":35,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2020,12]]}},"alternative-id":["1798"],"URL":"https:\/\/doi.org\/10.1007\/s10489-020-01798-x","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,7,28]]},"assertion":[{"value":"28 July 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}