{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T09:08:12Z","timestamp":1725959292980},"reference-count":41,"publisher":"Springer Science and Business Media LLC","issue":"12","license":[{"start":{"date-parts":[[2019,5,28]],"date-time":"2019-05-28T00:00:00Z","timestamp":1559001600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,5,28]],"date-time":"2019-05-28T00:00:00Z","timestamp":1559001600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1007\/s10489-019-01498-1","type":"journal-article","created":{"date-parts":[[2019,5,28]],"date-time":"2019-05-28T00:02:25Z","timestamp":1559001745000},"page":"4223-4236","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":12,"title":["Epsilon-nonparallel support vector regression"],"prefix":"10.1007","volume":"49","author":[{"given":"Miguel","family":"Carrasco","sequence":"first","affiliation":[]},{"given":"Julio","family":"L\u00f3pez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7124-0437","authenticated-orcid":false,"given":"Sebasti\u00e1n","family":"Maldonado","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,5,28]]},"reference":[{"issue":"1","key":"1498_CR1","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1007\/s10489-017-0964-6","volume":"48","author":"M Abaszade","year":"2018","unstructured":"Abaszade M, Effati S (2018) Stochastic support vector regression with probabilistic constraints. Appl Intell 48(1):243\u2013256","journal-title":"Appl Intell"},{"issue":"2-3","key":"1498_CR2","first-page":"255","volume":"17","author":"J Alcal\u00e1-Fdez","year":"2011","unstructured":"Alcal\u00e1-Fdez J, Fernandez A, Luengo J, Derrac J, Garc\u00eda S, S\u00e1nchez L, Herrera F (2011) Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing 17(2-3):255\u2013287","journal-title":"Journal of Multiple-Valued Logic and Soft Computing"},{"key":"1498_CR3","unstructured":"Bache K, Lichman M (2013) UCI machine learning repository. \nhttp:\/\/archive.ics.uci.edu\/ml"},{"issue":"4","key":"1498_CR4","doi-asserted-by":"publisher","first-page":"931","DOI":"10.1007\/s10489-015-0731-5","volume":"44","author":"S Balasundaram","year":"2016","unstructured":"Balasundaram S, Meena Y (2016) Training primal twin support vector regression via unconstrained convex minimization. Appl Intell 44(4):931\u2013955","journal-title":"Appl Intell"},{"key":"1498_CR5","doi-asserted-by":"publisher","first-page":"27:1","DOI":"10.1145\/1961189.1961199","volume":"2","author":"CC Chang","year":"2011","unstructured":"Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27:1\u201327:27. software available at \nhttp:\/\/www.csie.ntu.edu.tw\/cjlin\/libsvm","journal-title":"ACM Trans Intell Syst Technol"},{"key":"1498_CR6","doi-asserted-by":"publisher","first-page":"505","DOI":"10.1007\/s00521-010-0454-9","volume":"21","author":"X Chen","year":"2012","unstructured":"Chen X, Yang J, Liang J, Ye Q (2012) Smooth twin support vector regression. Neural Comput & Applic 21:505\u2013513","journal-title":"Neural Comput & Applic"},{"key":"1498_CR7","first-page":"273","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273\u2013297","journal-title":"Mach Learn"},{"key":"1498_CR8","first-page":"1","volume":"7","author":"J Dem\u0161ar","year":"2006","unstructured":"Dem\u0161ar J (2006) Statistical comparisons of classifiers over multiple data set. J Mach Learn Res 7:1\u201330","journal-title":"J Mach Learn Res"},{"key":"1498_CR9","doi-asserted-by":"publisher","DOI":"10.1201\/b14297","volume-title":"Support vector machines: optimization based theory, algorithms, and extensions","author":"N Deng","year":"2012","unstructured":"Deng N, Tian Y, Zhang C (2012) Support vector machines: optimization based theory, algorithms, and extensions. Chapman and Hall\/CRC, Boca Raton"},{"key":"1498_CR10","unstructured":"Drucker H, Burges C, Kaufman L, Smola A, Vapnik V (1997) Support vector regression machines. In: Advances in neural information processing systems (NIPS), vol 9. MIT Press, pp 155\u2013161"},{"key":"1498_CR11","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1016\/j.ins.2015.09.021","volume":"364","author":"A Gorban","year":"2016","unstructured":"Gorban A, Tyukin I, Prokhorov D, Sofeikov K (2016) Approximation with random bases: Pro et contra. Inf Sci 364:129\u2013145","journal-title":"Inf Sci"},{"issue":"5","key":"1498_CR12","doi-asserted-by":"publisher","first-page":"905","DOI":"10.1109\/TPAMI.2007.1068","volume":"29","author":"KhemchandaniR Jayadeva","year":"2007","unstructured":"Jayadeva Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905\u2013910","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"4","key":"1498_CR13","doi-asserted-by":"publisher","first-page":"3341","DOI":"10.1109\/TSG.2016.2628061","volume":"9","author":"H Jiang","year":"2018","unstructured":"Jiang H, Zhang Y, Muljadi E, Zhang J, Gao DW (2018) A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization. IEEE Trans Smart Grid 9(4):3341\u20133350","journal-title":"IEEE Trans Smart Grid"},{"key":"1498_CR14","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1016\/j.neunet.2015.10.007","volume":"74","author":"R Khemchandani","year":"2016","unstructured":"Khemchandani R, Goyal K, Chandra S (2016) Twsvr: regression via twin support vector machine. Neural Netw 74:14\u201321","journal-title":"Neural Netw"},{"key":"1498_CR15","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1016\/j.knosys.2018.04.005","volume":"152","author":"J L\u00f3pez","year":"2018","unstructured":"L\u00f3pez J, Maldonado S (2018) Robust twin support vector regression via second-order cone programming. Knowl-Based Syst 152:83\u201393","journal-title":"Knowl-Based Syst"},{"issue":"4","key":"1498_CR16","doi-asserted-by":"publisher","first-page":"1031","DOI":"10.1007\/s10489-017-0943-y","volume":"47","author":"J L\u00f3pez","year":"2017","unstructured":"L\u00f3pez J, Carrasco M, Maldonado S (2017) A robust formulation for twin multiclass support vector machine. Appl Intell 47(4):1031\u20131043","journal-title":"Appl Intell"},{"key":"1498_CR17","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1016\/j.knosys.2017.06.025","volume":"132","author":"S Maldonado","year":"2017","unstructured":"Maldonado S, L\u00f3pez J (2017) Synchronized feature selection for support vector machines with twin hyperplanes. Knowl-Based Syst 132:119\u2013128","journal-title":"Knowl-Based Syst"},{"key":"1498_CR18","doi-asserted-by":"crossref","unstructured":"Maldonado S, Weber R (2010) Feature selection for support vector regression via kernel penalization. In: Proceedings of the 2010 International Joint Conference on Neural Networks, Barcelona, Spain, pp 1973\u20131979","DOI":"10.1109\/IJCNN.2010.5596488"},{"issue":"2","key":"1498_CR19","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1007\/s10489-016-0764-4","volume":"45","author":"S Maldonado","year":"2016","unstructured":"Maldonado S, L\u00f3pez J, Carrasco M (2016) A second-order cone programming formulation for twin support vector machines. Appl Intell 45(2):265\u2013276","journal-title":"Appl Intell"},{"issue":"5","key":"1498_CR20","doi-asserted-by":"publisher","first-page":"1032","DOI":"10.1109\/72.788643","volume":"10","author":"OL Mangasarian","year":"1999","unstructured":"Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Netw 10(5):1032\u20131037. \nhttps:\/\/doi.org\/10.1109\/72.788643","journal-title":"IEEE Trans Neural Netw"},{"key":"1498_CR21","doi-asserted-by":"publisher","first-page":"384","DOI":"10.1016\/j.asoc.2018.02.040","volume":"66","author":"G Melki","year":"2018","unstructured":"Melki G, Kecman V, Ventura S, Cano A (2018) Ollawv: online learning algorithm using worst-violators. Appl Soft Comput 66:384\u2013393","journal-title":"Appl Soft Comput"},{"issue":"3","key":"1498_CR22","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1016\/j.neunet.2009.07.002","volume":"23","author":"X Peng","year":"2010","unstructured":"Peng X (2010) Tsvr: an efficient twin support vector machine for regression. Neural Netw 23(3):365\u2013372","journal-title":"Neural Netw"},{"key":"1498_CR23","doi-asserted-by":"publisher","first-page":"26","DOI":"10.1016\/j.neucom.2011.09.021","volume":"79","author":"X Peng","year":"2012","unstructured":"Peng X (2012) Efficient twin parametric insensitive support vector regression model. Neurocomputing 79:26\u201338","journal-title":"Neurocomputing"},{"issue":"11","key":"1498_CR24","doi-asserted-by":"publisher","first-page":"1895","DOI":"10.1080\/02331934.2017.1364739","volume":"66","author":"R R Rastogi","year":"2017","unstructured":"R Rastogi R, Ananda P, Chandra S (2017) L1-norm twin support vector machine-based regression. Optimization 66(11):1895\u20131911","journal-title":"Optimization"},{"key":"1498_CR25","doi-asserted-by":"publisher","first-page":"24","DOI":"10.1109\/MCI.2009.932254","volume":"4","author":"N Sapankevych","year":"2009","unstructured":"Sapankevych N, Sankar R (2009) Time series prediction using support vector machines: a survey. IEEE Comput Intell Mag 4:24\u201338","journal-title":"IEEE Comput Intell Mag"},{"issue":"2","key":"1498_CR26","doi-asserted-by":"publisher","first-page":"e1200","DOI":"10.1002\/widm.1200","volume":"7","author":"Simone Scardapane","year":"2017","unstructured":"Scardapane S, Wang D (2017) Randomness in neural networks: an overview. WIREs Data Min Knowl Discovery, vol 7(2). \nhttps:\/\/doi.org\/10.1002\/widm.1200","journal-title":"Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery"},{"key":"1498_CR27","volume-title":"Learning with Kernels","author":"B Sch\u00f6lkopf","year":"2002","unstructured":"Sch\u00f6lkopf B, Smola AJ (2002) Learning with Kernels. MIT Press, Cambridge"},{"issue":"5","key":"1498_CR28","doi-asserted-by":"publisher","first-page":"1207","DOI":"10.1162\/089976600300015565","volume":"12","author":"B Sch\u00f6lkopf","year":"2000","unstructured":"Sch\u00f6lkopf B, Smola AJ, Williamson RC, Bartlett PL (2000) New support vector algorithms. Neural Comput 12(5):1207\u20131245","journal-title":"Neural Comput"},{"key":"1498_CR29","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1007\/s00521-012-0924-3","volume":"23","author":"YH Shao","year":"2013","unstructured":"Shao YH, Zhang CH, Yang ZM, Jing L, Deng N (2013) An epsilon-twin support vector machine for regression. Neural Comput & Applic 23:175\u2013185","journal-title":"Neural Comput & Applic"},{"key":"1498_CR30","doi-asserted-by":"publisher","first-page":"1474","DOI":"10.1016\/j.neucom.2010.11.003","volume":"74","author":"M Singh","year":"2011","unstructured":"Singh M, Chadha J, Ahuja P, Jayadeva Chandra S (2011) Reduced twin support vector regression. Neurocomputing 74:1474\u20131477","journal-title":"Neurocomputing"},{"issue":"12","key":"1498_CR31","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1080\/10556789908805766","volume":"11","author":"J Sturm","year":"1999","unstructured":"Sturm J (1999) Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim Methods Softw 11(12):625\u2013653. special issue on Interior Point Methods (CD supplement with software)","journal-title":"Optim Methods Softw"},{"key":"1498_CR32","doi-asserted-by":"publisher","first-page":"431","DOI":"10.1016\/j.neunet.2018.06.004","volume":"105","author":"L Tang","year":"2018","unstructured":"Tang L, Tian Y, Yang C (2018) Nonparallel support vector regression model and its smo-type solver. Neural Nertworks 105:431\u2013446","journal-title":"Neural Nertworks"},{"issue":"4","key":"1498_CR33","doi-asserted-by":"publisher","first-page":"831","DOI":"10.1007\/s10489-015-0728-0","volume":"44","author":"M Tanveer","year":"2016","unstructured":"Tanveer M, Shubham K, Aldhaifallah M, Nisar K (2016) An efficient implicit regularized lagrangian twin support vector regression. Appl Intell 44(4):831\u2013848","journal-title":"Appl Intell"},{"issue":"3","key":"1498_CR34","doi-asserted-by":"publisher","first-page":"626","DOI":"10.1109\/TPWRS.2002.800906","volume":"17","author":"JW Taylor","year":"2002","unstructured":"Taylor JW, Buizza R (2002) Neural network load forecasting with weather ensemble predictions. IEEE Trans Power Syst 17(3):626\u2013632","journal-title":"IEEE Trans Power Syst"},{"issue":"7","key":"1498_CR35","doi-asserted-by":"publisher","first-page":"1067","DOI":"10.1109\/TCYB.2013.2279167","volume":"44","author":"Y Tian","year":"2014","unstructured":"Tian Y, Qi Z, Ju X, Shi Y, Liu X (2014a) Nonparallel support vector machines for pattern classification. IEEE Transactions on Bybernetics 44(7):1067\u20131079","journal-title":"IEEE Transactions on Bybernetics"},{"issue":"5","key":"1498_CR36","doi-asserted-by":"publisher","first-page":"1007","DOI":"10.1007\/s00521-014-1575-3","volume":"25","author":"Y Tian","year":"2014","unstructured":"Tian Y, Zhang Q, Liu D (2014b) nu-nonparallel support vector machine for pattern classification. Neural Comput & Applic 25(5):1007\u20131020","journal-title":"Neural Comput & Applic"},{"issue":"4","key":"1498_CR37","doi-asserted-by":"publisher","first-page":"499","DOI":"10.1007\/s40305-015-0095-x","volume":"3","author":"YJ Tian","year":"2015","unstructured":"Tian YJ, Ju XC (2015) Nonparallel support vector machine based on one optimization problem for pattern recognition. Journal of the Operations Research Society of China 3(4):499\u2013519","journal-title":"Journal of the Operations Research Society of China"},{"key":"1498_CR38","volume-title":"Statistical learning theory","author":"V Vapnik","year":"1998","unstructured":"Vapnik V (1998) Statistical learning theory. Wiley, New Jersey"},{"issue":"10","key":"1498_CR39","doi-asserted-by":"publisher","first-page":"3466","DOI":"10.1109\/TCYB.2017.2734043","volume":"47","author":"D Wang","year":"2017","unstructured":"Wang D, Li M (2017) Stochastic configuration networks: fundamentals and algorithms. IEEE Trans on Cybernetics 47(10):3466\u20133479","journal-title":"IEEE Trans on Cybernetics"},{"issue":"10","key":"1498_CR40","doi-asserted-by":"publisher","first-page":"3306","DOI":"10.1109\/TCYB.2017.2682852","volume":"47","author":"H Wang","year":"2017","unstructured":"Wang H, Shi Y, Niu L, Tian Y (2017) Nonparallel support vector ordinal regression. IEEE Transactions on Cybernetics 47(10):3306\u20133317","journal-title":"IEEE Transactions on Cybernetics"},{"key":"1498_CR41","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1016\/j.knosys.2019.01.031","volume":"170","author":"J Zhao","year":"2019","unstructured":"Zhao J, Xu Y, Fujita H (2019) An improved non-parallel universum support vector machine and its safe sample screening rule. Knowl-Based Syst 170:79\u201388","journal-title":"Knowl-Based Syst"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-019-01498-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10489-019-01498-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-019-01498-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,5,26]],"date-time":"2020-05-26T23:14:35Z","timestamp":1590534875000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10489-019-01498-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,5,28]]},"references-count":41,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2019,12]]}},"alternative-id":["1498"],"URL":"https:\/\/doi.org\/10.1007\/s10489-019-01498-1","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,5,28]]},"assertion":[{"value":"28 May 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}