{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T14:38:05Z","timestamp":1720017485274},"reference-count":62,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"name":"NSF","award":["CMMI-1100765"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Ann Oper Res"],"published-print":{"date-parts":[[2022,2]]},"abstract":"Abstract<\/jats:title>This paper presents a new and general approach, named \u201cStage-t<\/jats:italic> Scenario Dominance,\u201d to solve the risk-averse multi-stage stochastic mixed-integer programs (M-SMIPs). Given a monotonic objective function, our method derives a partial ordering of scenarios by pairwise comparing the realization of uncertain parameters at each time stage under each scenario. Specifically, we derive bounds and implications from the \u201cStage-t<\/jats:italic> Scenario Dominance\u201d by using the partial ordering of scenarios and solving a subset of individual scenario sub-problems up to stage t<\/jats:italic>. Using these inferences, we generate new cutting planes to tackle the computational difficulty of risk-averse M-SMIPs. We also derive results on the minimum number of scenario-dominance relations generated. We demonstrate the use of this methodology on a stochastic version of the mean-conditional value-at-risk (CVaR) dynamic knapsack problem. Our computational experiments address those instances that have uncertainty, which correspond to the objective, left-hand side, and right-hand side parameters. Computational results show that our \u201cscenario dominance\"-based method can reduce the solution time for mean-risk, stochastic, multi-stage, and multi-dimensional knapsack problems with both integer and continuous variables, whose structure is similar to the mean-risk M-SMIPs, with varying risk characteristics by one-to-two orders of magnitude for varying numbers of random variables in each stage. Computational results also demonstrate that strong dominance cuts perform well for those instances with ten random variables in each stage, and ninety random variables in total. The proposed scenario dominance framework is general and can be applied to a wide range of risk-averse and risk-neutral M-SMIP problems.\n<\/jats:p>","DOI":"10.1007\/s10479-021-04388-3","type":"journal-article","created":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T14:03:39Z","timestamp":1638367419000},"page":"1-35","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs"],"prefix":"10.1007","volume":"309","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8928-2638","authenticated-orcid":false,"given":"\u0130. Esra","family":"B\u00fcy\u00fcktahtak\u0131n","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,12,1]]},"reference":[{"issue":"3","key":"4388_CR1","doi-asserted-by":"publisher","first-page":"433","DOI":"10.1007\/s10107-005-0638-8","volume":"106","author":"S Ahmed","year":"2006","unstructured":"Ahmed, S. (2006). Convexity and decomposition of mean-risk stochastic programs. Mathematical Programming, 106(3), 433\u2013446.","journal-title":"Mathematical Programming"},{"issue":"6","key":"4388_CR2","doi-asserted-by":"publisher","first-page":"565","DOI":"10.1016\/j.orl.2013.07.009","volume":"41","author":"S Ahmed","year":"2013","unstructured":"Ahmed, S. (2013). A scenario decomposition algorithm for 0\u20131 stochastic programs. Operations Research Letters, 41(6), 565\u2013569.","journal-title":"Operations Research Letters"},{"issue":"3","key":"4388_CR3","doi-asserted-by":"publisher","first-page":"1051","DOI":"10.1016\/j.ejor.2017.12.022","volume":"267","author":"A Alonso-Ayuso","year":"2018","unstructured":"Alonso-Ayuso, A., Escudero, L. F., Guignard, M., & Weintraub, A. (2018). Risk management for forestry planning under uncertainty in demand and prices. European Journal of Operational Research, 267(3), 1051\u20131074.","journal-title":"European Journal of Operational Research"},{"issue":"3","key":"4388_CR4","doi-asserted-by":"publisher","first-page":"483","DOI":"10.1287\/ijoc.2016.0695","volume":"28","author":"G Angulo","year":"2016","unstructured":"Angulo, G., Ahmed, S., & Dey, S. S. (2016). Improving the integer L-shaped method. INFORMS Journal on Computing, 28(3), 483\u2013499.","journal-title":"INFORMS Journal on Computing"},{"issue":"1","key":"4388_CR5","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1287\/ijoc.2018.0885","volume":"32","author":"I Bakir","year":"2020","unstructured":"Bakir, I., Boland, N., Dandurand, B., & Erera, A. (2020). Sampling scenario set partition dual bounds for multistage stochastic programs. INFORMS Journal on Computing, 32(1), 145\u2013163.","journal-title":"INFORMS Journal on Computing"},{"issue":"5","key":"4388_CR6","first-page":"679","volume":"6","author":"R Bellman","year":"1957","unstructured":"Bellman, R. (1957). A Markovian decision process. Journal of mathematics and mechanics, 6(5), 679\u2013684.","journal-title":"Journal of mathematics and mechanics"},{"issue":"1","key":"4388_CR7","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s10287-004-0020-y","volume":"2","author":"JF Benders","year":"2005","unstructured":"Benders, J. F. (2005). Partitioning procedures for solving mixed-variables programming problems. Computational Management Science, 2(1), 3\u201319.","journal-title":"Computational Management Science"},{"issue":"1","key":"4388_CR8","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1007\/BF02591859","volume":"31","author":"JR Birge","year":"1985","unstructured":"Birge, J. R. (1985). Aggregation bounds in stochastic linear programming. Mathematical Programming, 31(1), 25\u201341.","journal-title":"Mathematical Programming"},{"key":"4388_CR9","doi-asserted-by":"crossref","unstructured":"Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer.","DOI":"10.1007\/978-1-4614-0237-4"},{"issue":"3","key":"4388_CR10","doi-asserted-by":"publisher","first-page":"185","DOI":"10.1016\/0166-218X(90)90053-F","volume":"41","author":"EA Boyd","year":"1993","unstructured":"Boyd, E. A. (1993). Polyhedral results for the precedence-constrained knapsack problem. Discrete Applied Mathematics, 41(3), 185\u2013201.","journal-title":"Discrete Applied Mathematics"},{"key":"4388_CR11","doi-asserted-by":"crossref","unstructured":"B\u00fcy\u00fcktahtak\u0131n, I. E. (2011). Dynamic programming via linear programming. Wiley Encyclopedia of Operations Research and Management Science. Wiley.","DOI":"10.1002\/9780470400531.eorms0277"},{"key":"4388_CR12","unstructured":"B\u00fcy\u00fcktahtak\u0131n, \u0130.\u00a0E. (2021). SODAL CVaRSMKP-LIB: Systems optimization and data analytics laboratory mean-CVaR stochastic multi-dimensional mixed 0\u20131 knapsack test problem library. https:\/\/web.njit.edu\/~esratoy\/Research.html"},{"issue":"1\u20132","key":"4388_CR13","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/S0167-6377(98)00050-9","volume":"24","author":"CC Car\u00f8E","year":"1999","unstructured":"Car\u00f8E, C. C., & Schultz, R. (1999). Dual decomposition in stochastic integer programming. Operations Research Letters, 24(1\u20132), 37\u201345.","journal-title":"Operations Research Letters"},{"issue":"1\u20132","key":"4388_CR14","first-page":"15","volume":"10","author":"J Csirik","year":"1991","unstructured":"Csirik, J. (1991). Heuristics for the 0\u20131 min-knapsack problem. Acta Cybernetica, 10(1\u20132), 15\u201320.","journal-title":"Acta Cybernetica"},{"issue":"4","key":"4388_CR15","doi-asserted-by":"publisher","first-page":"945","DOI":"10.1287\/moor.1080.0330","volume":"33","author":"BC Dean","year":"2008","unstructured":"Dean, B. C., Goemans, M. X., & Vondr\u00e1k, J. (2008). Approximating the stochastic knapsack problem: The benefit of adaptivity. Mathematics of Operations Research, 33(4), 945\u2013964.","journal-title":"Mathematics of Operations Research"},{"issue":"1","key":"4388_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ejor.2011.11.044","volume":"219","author":"D Dentcheva","year":"2012","unstructured":"Dentcheva, D., & Martinez, G. (2012). Two-stage stochastic optimization problems with stochastic ordering constraints on the recourse. European Journal of Operational Research, 219(1), 1\u20138.","journal-title":"European Journal of Operational Research"},{"issue":"1","key":"4388_CR17","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1023\/A:1019206915174","volume":"100","author":"J Dupa\u010dov\u00e1","year":"2000","unstructured":"Dupa\u010dov\u00e1, J., Consigli, G., & Wallace, S. W. (2000). Scenarios for multistage stochastic programs. Annals of operations research, 100(1), 25\u201353.","journal-title":"Annals of operations research"},{"issue":"3","key":"4388_CR18","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1007\/s00291-014-0379-2","volume":"37","author":"J Dupa\u010dov\u00e1","year":"2015","unstructured":"Dupa\u010dov\u00e1, J., & Kozm\u00edk, V. (2015). Structure of risk-averse multistage stochastic programs. OR spectrum, 37(3), 559\u2013582.","journal-title":"OR spectrum"},{"issue":"1","key":"4388_CR19","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1137\/040605217","volume":"16","author":"A Eichhorn","year":"2005","unstructured":"Eichhorn, A., & R\u00f6misch, W. (2005). Polyhedral risk measures in stochastic programming. SIAM Journal on Optimization, 16(1), 69\u201395.","journal-title":"SIAM Journal on Optimization"},{"issue":"1","key":"4388_CR20","doi-asserted-by":"publisher","first-page":"164","DOI":"10.1016\/j.ejor.2015.03.050","volume":"249","author":"LF Escudero","year":"2016","unstructured":"Escudero, L. F., Gar\u00edn, M. A., Merino, M., & P\u00e9rez, G. (2016). On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs. European Journal of Operational Research, 249(1), 164\u2013176.","journal-title":"European Journal of Operational Research"},{"issue":"3","key":"4388_CR21","doi-asserted-by":"publisher","first-page":"888","DOI":"10.1016\/j.ejor.2007.02.052","volume":"191","author":"CI F\u00e1bi\u00e1n","year":"2008","unstructured":"F\u00e1bi\u00e1n, C. I. (2008). Handling CVaR objectives and constraints in two-stage stochastic models. European Journal of Operational Research, 191(3), 888\u2013911.","journal-title":"European Journal of Operational Research"},{"issue":"1","key":"4388_CR22","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1007\/s10107-016-1000-z","volume":"157","author":"D Gade","year":"2016","unstructured":"Gade, D., Hackebeil, G., Ryan, S. M., Watson, J.-P., Wets, R.J.-B., & Woodruff, D. L. (2016). Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs. Mathematical Programming, 157(1), 47\u201367.","journal-title":"Mathematical Programming"},{"issue":"2","key":"4388_CR23","doi-asserted-by":"publisher","first-page":"287","DOI":"10.1287\/opre.1080.0535","volume":"57","author":"Y Guan","year":"2009","unstructured":"Guan, Y., Ahmed, S., & Nemhauser, G. L. (2009). Cutting planes for multistage stochastic integer programs. Operations Research, 57(2), 287\u2013298.","journal-title":"Operations Research"},{"issue":"2","key":"4388_CR24","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1016\/S0167-6377(99)00066-8","volume":"26","author":"MM G\u00fcNtzer","year":"2000","unstructured":"G\u00fcNtzer, M. M., & Jungnickel, D. (2000). Approximate minimization algorithms for the 0\/1 knapsack and subset-sum problem. Operations Research Letters, 26(2), 55\u201366.","journal-title":"Operations Research Letters"},{"key":"4388_CR25","doi-asserted-by":"crossref","unstructured":"Han, X. & K.\u00a0Makino (2009). Online minimization knapsack problem. In International workshop on approximation and online algorithms (pp. 182\u2013193). Springer.","DOI":"10.1007\/978-3-642-12450-1_17"},{"issue":"2","key":"4388_CR26","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1080\/02331930701779906","volume":"57","author":"T Heinze","year":"2008","unstructured":"Heinze, T., & Schultz, R. (2008). A branch-and-bound method for multistage stochastic integer programs with risk objectives. Optimization, 57(2), 277\u2013293.","journal-title":"Optimization"},{"issue":"2","key":"4388_CR27","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1007\/s10287-008-0087-y","volume":"6","author":"H Heitsch","year":"2009","unstructured":"Heitsch, H., & R\u00f6misch, W. (2009). Scenario tree reduction for multistage stochastic programs. Computational Management Science, 6(2), 117\u2013133.","journal-title":"Computational Management Science"},{"issue":"1","key":"4388_CR28","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1016\/j.ejor.2015.05.048","volume":"249","author":"T Homem-de Mello","year":"2016","unstructured":"Homem-de Mello, T., & Pagnoncelli, B. K. (2016). Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective. European Journal of Operational Research, 249(1), 188\u2013199.","journal-title":"European Journal of Operational Research"},{"key":"4388_CR29","doi-asserted-by":"crossref","unstructured":"Israeli, E. & Wood, R. K. (2002). Shortest-path network interdiction. Networks: An International Journal 40(2), 97\u2013111.","DOI":"10.1002\/net.10039"},{"key":"4388_CR30","doi-asserted-by":"crossref","unstructured":"Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Multidimensional knapsack problems. In Knapsack problems (pp. 235\u2013283). Springer.","DOI":"10.1007\/978-3-540-24777-7_9"},{"key":"4388_CR31","doi-asserted-by":"crossref","unstructured":"Kibis, E., B\u00fcy\u00fcktahtak\u0131n, \u0130.\u00a0E., Haight, R.G., Akhundov, N., Knight, K., & Flower, C. (2020). A new multi-stage stochastic programming model and cutting planes for the optimal surveillance and control of emerald ash borer in cities. Forthcoming in INFORMS Journal on Computing.","DOI":"10.1287\/ijoc.2020.0963"},{"issue":"3","key":"4388_CR32","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1016\/0167-6377(93)90002-X","volume":"13","author":"G Laporte","year":"1993","unstructured":"Laporte, G., & Louveaux, F. V. (1993). The integer L-shaped method for stochastic integer programs with complete recourse. Operations Research Letters, 13(3), 133\u2013142.","journal-title":"Operations Research Letters"},{"issue":"3","key":"4388_CR33","doi-asserted-by":"publisher","first-page":"1433","DOI":"10.1137\/070707956","volume":"19","author":"J Luedtke","year":"2008","unstructured":"Luedtke, J. (2008). New formulations for optimization under stochastic dominance constraints. SIAM Journal on Optimization, 19(3), 1433\u20131450.","journal-title":"SIAM Journal on Optimization"},{"issue":"6","key":"4388_CR34","doi-asserted-by":"publisher","first-page":"786","DOI":"10.1287\/mnsc.1030.0164","volume":"50","author":"G Lulli","year":"2004","unstructured":"Lulli, G., & Sen, S. (2004). A branch-and-price algorithm for multistage stochastic integer programming with application to stochastic batch-sizing problems. Management Science, 50(6), 786\u2013796.","journal-title":"Management Science"},{"issue":"2","key":"4388_CR35","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1287\/mnsc.6.2.197","volume":"6","author":"A Madansky","year":"1960","unstructured":"Madansky, A. (1960). Inequalities for stochastic linear programming problems. Management Science, 6(2), 197\u2013204.","journal-title":"Management Science"},{"issue":"1","key":"4388_CR36","doi-asserted-by":"publisher","first-page":"200","DOI":"10.1007\/s10957-013-0450-1","volume":"163","author":"F Maggioni","year":"2014","unstructured":"Maggioni, F., Allevi, E., & Bertocchi, M. (2014). Bounds in multistage linear stochastic programming. Journal of Optimization Theory and Applications, 163(1), 200\u2013229.","journal-title":"Journal of Optimization Theory and Applications"},{"issue":"3","key":"4388_CR37","doi-asserted-by":"publisher","first-page":"423","DOI":"10.1007\/s10287-016-0254-5","volume":"13","author":"F Maggioni","year":"2016","unstructured":"Maggioni, F., Allevi, E., & Bertocchi, M. (2016). Monotonic bounds in multistage mixed-integer stochastic programming. Computational Management Science, 13(3), 423\u2013457.","journal-title":"Computational Management Science"},{"issue":"1","key":"4388_CR38","doi-asserted-by":"publisher","first-page":"831","DOI":"10.1137\/140971889","volume":"26","author":"F Maggioni","year":"2016","unstructured":"Maggioni, F., & Pflug, G. C. (2016). Bounds and approximations for multistage stochastic programs. SIAM Journal on Optimization, 26(1), 831\u2013855.","journal-title":"SIAM Journal on Optimization"},{"issue":"1","key":"4388_CR39","doi-asserted-by":"publisher","first-page":"454","DOI":"10.1137\/17M1140601","volume":"29","author":"F Maggioni","year":"2019","unstructured":"Maggioni, F., & Pflug, G. C. (2019). Guaranteed bounds for general nondiscrete multistage risk-averse stochastic optimization programs. SIAM Journal on Optimization, 29(1), 454\u2013483.","journal-title":"SIAM Journal on Optimization"},{"issue":"2","key":"4388_CR40","doi-asserted-by":"publisher","first-page":"595","DOI":"10.1016\/j.ejor.2017.10.038","volume":"266","author":"A\u0130 Mahmuto\u011fullar\u0131","year":"2018","unstructured":"Mahmuto\u011fullar\u0131, A. \u0130, \u00c7avu\u015f, \u00d6., & Akt\u00fcrk, M. S. (2018). Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR. European Journal of Operational Research, 266(2), 595\u2013608.","journal-title":"European Journal of Operational Research"},{"key":"4388_CR41","doi-asserted-by":"crossref","unstructured":"Morton, D.\u00a0P. & Wood, R. K. (1998). On a stochastic knapsack problem and generalizations. In Advances in computational and stochastic optimization, logic programming, and heuristic search (pp. 149\u2013168). Springer.","DOI":"10.1007\/978-1-4757-2807-1_5"},{"key":"4388_CR42","unstructured":"M\u00fcller, A., & Stoyan, D. (2002). Comparison methods for stochastic models and risks (Vol. 389). Wiley."},{"issue":"1\u20134","key":"4388_CR43","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1023\/A:1019248506301","volume":"100","author":"MP Nowak","year":"2000","unstructured":"Nowak, M. P., & R\u00f6misch, W. (2000). Stochastic Lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty. Annals of Operations Research, 100(1\u20134), 251\u2013272.","journal-title":"Annals of Operations Research"},{"issue":"1","key":"4388_CR44","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1137\/S1052623400375075","volume":"13","author":"W Ogryczak","year":"2002","unstructured":"Ogryczak, W., & Ruszczynski, A. (2002). Dual stochastic dominance and related mean-risk models. SIAM Journal on Optimization, 13(1), 60\u201378.","journal-title":"SIAM Journal on Optimization"},{"issue":"3","key":"4388_CR45","doi-asserted-by":"publisher","first-page":"219","DOI":"10.1016\/0166-218X(95)00113-6","volume":"72","author":"K Park","year":"1997","unstructured":"Park, K., & Park, S. (1997). Lifting cover inequalities for the precedence-constrained knapsack problem. Discrete Applied Mathematics, 72(3), 219\u2013241.","journal-title":"Discrete Applied Mathematics"},{"key":"4388_CR46","doi-asserted-by":"crossref","unstructured":"Pflug, G. C. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. In Probabilistic constrained optimization (pp. 272\u2013281). Springer.","DOI":"10.1007\/978-1-4757-3150-7_15"},{"issue":"3","key":"4388_CR47","doi-asserted-by":"publisher","first-page":"641","DOI":"10.1007\/s10589-015-9758-0","volume":"62","author":"GC Pflug","year":"2015","unstructured":"Pflug, G. C., & Pichler, A. (2015). Dynamic generation of scenario trees. Computational Optimization and Applications, 62(3), 641\u2013668.","journal-title":"Computational Optimization and Applications"},{"key":"4388_CR48","doi-asserted-by":"crossref","unstructured":"Rockafellar, R. T., Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21\u201342.","DOI":"10.21314\/JOR.2000.038"},{"issue":"2","key":"4388_CR49","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1007\/s10107-002-0337-7","volume":"93","author":"A Ruszczy\u0144ski","year":"2002","unstructured":"Ruszczy\u0144ski, A. (2002). Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra. Mathematical Programming, 93(2), 195\u2013215.","journal-title":"Mathematical Programming"},{"key":"4388_CR50","doi-asserted-by":"crossref","unstructured":"Ruszczy\u0144ski, A. (2013). Advances in risk-averse optimization. In Theory Driven by Influential Applications (pp. 168\u2013190). INFORMS.","DOI":"10.1287\/educ.2013.0110"},{"issue":"1","key":"4388_CR51","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1007\/s10107-012-0526-y","volume":"138","author":"B Sand\u0131k\u00e7\u0131","year":"2013","unstructured":"Sand\u0131k\u00e7\u0131, B., Kong, N., & Schaefer, A. J. (2013). A hierarchy of bounds for stochastic mixed-integer programs. Mathematical Programming, 138(1), 253\u2013272.","journal-title":"Mathematical Programming"},{"issue":"3","key":"4388_CR52","doi-asserted-by":"publisher","first-page":"1772","DOI":"10.1137\/16M1075594","volume":"27","author":"B Sand\u0131k\u00e7\u0131","year":"2017","unstructured":"Sand\u0131k\u00e7\u0131, B., & \u00d6zalt\u0131n, O. (2017). A scalable bounding method for multistage stochastic programs. SIAM Journal on Optimization, 27(3), 1772\u20131800.","journal-title":"SIAM Journal on Optimization"},{"key":"4388_CR53","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1007\/978-1-4419-1642-6_8","volume":"150","author":"R Schultz","year":"2005","unstructured":"Schultz, R. (2005). Risk aversion in two-stage stochastic integer programming. Stochastic Programming, 150, 165\u2013187.","journal-title":"Stochastic Programming"},{"issue":"1","key":"4388_CR54","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1137\/S1052623402410855","volume":"14","author":"R Schultz","year":"2003","unstructured":"Schultz, R., & Tiedemann, S. (2003). Risk aversion via excess probabilities in stochastic programs with mixed-integer recourse. SIAM Journal on Optimization, 14(1), 115\u2013138.","journal-title":"SIAM Journal on Optimization"},{"issue":"2\u20133","key":"4388_CR55","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1007\/s10107-005-0658-4","volume":"105","author":"R Schultz","year":"2006","unstructured":"Schultz, R., & Tiedemann, S. (2006). Conditional value-at-risk in stochastic programs with mixed-integer recourse. Mathematical Programming, 105(2\u20133), 365\u2013386.","journal-title":"Mathematical Programming"},{"key":"4388_CR56","doi-asserted-by":"publisher","first-page":"515","DOI":"10.1016\/S0927-0507(05)12009-X","volume":"12","author":"S Sen","year":"2005","unstructured":"Sen, S. (2005). Algorithms for stochastic mixed-integer programming models. Handbooks in Operations Research and Management Science, 12, 515\u2013558.","journal-title":"Handbooks in Operations Research and Management Science"},{"issue":"2","key":"4388_CR57","doi-asserted-by":"publisher","first-page":"375","DOI":"10.1016\/j.ejor.2012.08.022","volume":"224","author":"A Shapiro","year":"2013","unstructured":"Shapiro, A., Tekaya, W., da Costa, J. P., & Soares, M. P. (2013). Risk neutral and risk averse stochastic dual dynamic programming method. European Journal of Operational Research, 224(2), 375\u2013391.","journal-title":"European Journal of Operational Research"},{"issue":"5","key":"4388_CR58","doi-asserted-by":"publisher","first-page":"1271","DOI":"10.1287\/opre.1080.0678","volume":"57","author":"KJ Singh","year":"2009","unstructured":"Singh, K. J., Philpott, A. B., & Wood, R. K. (2009). Dantzig-Wolfe decomposition for solving multistage stochastic capacity-planning problems. Operations Research, 57(5), 1271\u20131286.","journal-title":"Operations Research"},{"issue":"4","key":"4388_CR59","doi-asserted-by":"publisher","first-page":"355","DOI":"10.1007\/s10287-010-0125-4","volume":"8","author":"J-P Watson","year":"2011","unstructured":"Watson, J.-P., & Woodruff, D. L. (2011). Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems. Computational Management Science, 8(4), 355\u2013370.","journal-title":"Computational Management Science"},{"key":"4388_CR60","doi-asserted-by":"crossref","unstructured":"Yin, X., B\u00fcy\u00fcktahtakin, \u0130. E. (2021). Risk-averse multi-stage stochastic programming to optimizing vaccine allocation and treatment logistics for effective epidemic response. IISE Transactions on Healthcare Systems Engineering, 1\u201352 (just-accepted).","DOI":"10.1080\/24725579.2021.1938298"},{"key":"4388_CR61","unstructured":"Yu, X., Shen, S., & Ahmed, S. (2021). On the Value of Multistage Stochastic Facility Location with Risk Aversion. arXiv preprint arXiv:2105.11005."},{"issue":"1\u20132","key":"4388_CR62","doi-asserted-by":"publisher","first-page":"461","DOI":"10.1007\/s10107-018-1249-5","volume":"175","author":"J Zou","year":"2019","unstructured":"Zou, J., Ahmed, S., & Sun, X. A. (2019). Stochastic dual dynamic integer programming. Mathematical Programming, 175(1\u20132), 461\u2013502.","journal-title":"Mathematical Programming"}],"updated-by":[{"updated":{"date-parts":[[2022,1,17]],"date-time":"2022-01-17T00:00:00Z","timestamp":1642377600000},"DOI":"10.1007\/s10479-022-04533-6","type":"correction","label":"Correction"}],"container-title":["Annals of Operations Research"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10479-021-04388-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10479-021-04388-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10479-021-04388-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,24]],"date-time":"2022-10-24T05:16:10Z","timestamp":1666588570000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10479-021-04388-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,1]]},"references-count":62,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2022,2]]}},"alternative-id":["4388"],"URL":"https:\/\/doi.org\/10.1007\/s10479-021-04388-3","relation":{},"ISSN":["0254-5330","1572-9338"],"issn-type":[{"value":"0254-5330","type":"print"},{"value":"1572-9338","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,12,1]]},"assertion":[{"value":"27 October 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 December 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 January 2022","order":3,"name":"change_date","label":"Change Date","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Correction","order":4,"name":"change_type","label":"Change Type","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"A Correction to this paper has been published:","order":5,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"https:\/\/doi.org\/10.1007\/s10479-022-04533-6","URL":"https:\/\/doi.org\/10.1007\/s10479-022-04533-6","order":6,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}}]}}