{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T07:32:47Z","timestamp":1740123167120,"version":"3.37.3"},"reference-count":43,"publisher":"Springer Science and Business Media LLC","issue":"1-2","license":[{"start":{"date-parts":[[2017,10,10]],"date-time":"2017-10-10T00:00:00Z","timestamp":1507593600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Ann Oper Res"],"published-print":{"date-parts":[[2019,5]]},"DOI":"10.1007\/s10479-017-2674-1","type":"journal-article","created":{"date-parts":[[2017,10,10]],"date-time":"2017-10-10T06:55:05Z","timestamp":1507618505000},"page":"249-266","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Semi-supervised generalized eigenvalues classification"],"prefix":"10.1007","volume":"276","author":[{"given":"Marco","family":"Viola","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4511-5031","authenticated-orcid":false,"given":"Mara","family":"Sangiovanni","sequence":"additional","affiliation":[]},{"given":"Gerardo","family":"Toraldo","sequence":"additional","affiliation":[]},{"given":"Mario R.","family":"Guarracino","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,10,10]]},"reference":[{"issue":"1","key":"2674_CR1","doi-asserted-by":"publisher","first-page":"106","DOI":"10.1007\/s10851-015-0591-y","volume":"54","author":"L Antonelli","year":"2015","unstructured":"Antonelli, L., De Simone, V., & di Serafino, D. (2015). On the application of the spectral projected gradient method in image segmentation. Journal of Mathematical Imaging and Vision, 54(1), 106\u2013116.","journal-title":"Journal of Mathematical Imaging and Vision"},{"issue":"1\u20132","key":"2674_CR2","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1080\/02331931003692557","volume":"60","author":"A Astorino","year":"2011","unstructured":"Astorino, A., Gorgone, E., Gaudioso, M., & Pallaschke, D. (2011). Data preprocessing in semi-supervised svm classification. Optimization, 60(1\u20132), 143\u2013151.","journal-title":"Optimization"},{"issue":"2","key":"2674_CR3","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1162\/neco.1992.4.2.141","volume":"4","author":"R Battiti","year":"1992","unstructured":"Battiti, R. (1992). First and second-order methods for learning: Between steepest descent and Newton\u2019s method. Neural Computation, 4(2), 141\u2013166.","journal-title":"Neural Computation"},{"key":"2674_CR4","first-page":"2399","volume":"7","author":"M Belkin","year":"2006","unstructured":"Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. The Journal of Machine Learning Research, 7, 2399\u20132434.","journal-title":"The Journal of Machine Learning Research"},{"key":"2674_CR5","unstructured":"Bennett, K. P., & Demiriz, A. (1999). Semi-supervised support vector machines. In Advances in neural information processing systems 11: Proceedings of the 1998 conference (Vol. 11). Cambridge: MIT Press."},{"issue":"3","key":"2674_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.18637\/jss.v060.i03","volume":"60","author":"EG Birgin","year":"2014","unstructured":"Birgin, E. G., Martinez, J. M., & Raydan, M. (2014). Spectral projected gradient methods: Review and perspectives. J. Stat. Softw, 60(3), 1\u201321.","journal-title":"J. Stat. Softw"},{"issue":"3","key":"2674_CR7","doi-asserted-by":"publisher","first-page":"355","DOI":"10.1007\/s10957-007-9264-3","volume":"135","author":"S Cafieri","year":"2007","unstructured":"Cafieri, S., D\u2019Apuzzo, M., De Simone, V., Di Serafino, D., & Toraldo, G. (2007). Convergence analysis of an inexact potential reduction method for convex quadratic programming. Journal of Optimization Theory and Applications, 135(3), 355\u2013366.","journal-title":"Journal of Optimization Theory and Applications"},{"key":"2674_CR8","doi-asserted-by":"crossref","unstructured":"Chapelle, O., Scholkopf, B., & Zien, A. (2006). Semi-supervised learning. Cambridge: MIT Press.","DOI":"10.7551\/mitpress\/9780262033589.001.0001"},{"key":"2674_CR9","first-page":"203","volume":"9","author":"O Chapelle","year":"2008","unstructured":"Chapelle, O., Sindhwani, V., & Keerthi, S. S. (2008). Optimization techniques for semi-supervised support vector machines. The Journal of Machine Learning Research, 9, 203\u2013233.","journal-title":"The Journal of Machine Learning Research"},{"key":"2674_CR10","unstructured":"Chapelle, O., Zien, A. (2005). Semi-supervised classification by low density separation. In: AISTATS, (pp. 57\u201364)."},{"key":"2674_CR11","doi-asserted-by":"publisher","first-page":"465","DOI":"10.1016\/j.neucom.2014.05.007","volume":"145","author":"WJ Chen","year":"2014","unstructured":"Chen, W. J., Shao, Y. H., Deng, N. Y., & Feng, Z. L. (2014). Laplacian least squares twin support vector machine for semi-supervised classification. Neurocomputing, 145, 465\u2013476.","journal-title":"Neurocomputing"},{"issue":"3","key":"2674_CR12","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1007\/s13042-013-0183-3","volume":"5","author":"WJ Chen","year":"2014","unstructured":"Chen, W. J., Shao, Y. H., & Hong, N. (2014). Laplacian smooth twin support vector machine for semi-supervised classification. International Journal of Machine Learning and Cybernetics, 5(3), 459\u2013468.","journal-title":"International Journal of Machine Learning and Cybernetics"},{"key":"2674_CR13","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1016\/j.patcog.2015.10.008","volume":"52","author":"WJ Chen","year":"2016","unstructured":"Chen, W. J., Shao, Y. H., Li, C. N., & Deng, N. Y. (2016). MLTSVM: A novel twin support vector machine to multi-label learning. Pattern Recognition, 52, 61\u201374.","journal-title":"Pattern Recognition"},{"issue":"4","key":"2674_CR14","doi-asserted-by":"publisher","first-page":"623","DOI":"10.1007\/s10489-013-0491-z","volume":"40","author":"WJ Chen","year":"2014","unstructured":"Chen, W. J., Shao, Y. H., Xu, D. K., & Fu, Y. F. (2014). Manifold proximal support vector machine for semi-supervised classification. Applied Intelligence, 40(4), 623\u2013638.","journal-title":"Applied Intelligence"},{"issue":"3","key":"2674_CR15","first-page":"273","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273\u2013297.","journal-title":"Machine Learning"},{"key":"2674_CR16","doi-asserted-by":"crossref","unstructured":"Cullum, J. K., & Willoughby, R. A. (2002). Lanczos algorithms for large symmetric eigenvalue computations: Vol. I: Theory. Philadelphia, PA: Society for Industrial and Applied Mathematics.","DOI":"10.1137\/1.9780898719192"},{"issue":"5","key":"2674_CR17","doi-asserted-by":"publisher","first-page":"1483","DOI":"10.1137\/0730077","volume":"30","author":"PL Angelis De","year":"1993","unstructured":"De Angelis, P. L., & Toraldo, G. (1993). On the identification property of a projected gradient method. SIAM Journal on Numerical Analysis, 30(5), 1483\u20131497.","journal-title":"SIAM Journal on Numerical Analysis"},{"issue":"3","key":"2674_CR18","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1007\/s10589-014-9669-5","volume":"59","author":"R Asmundis De","year":"2014","unstructured":"De Asmundis, R., di Serafino, D., Hager, W. W., Toraldo, G., & Zhang, H. (2014). An efficient gradient method using the Yuan steplength. Computational Optimization and Applications, 59(3), 541\u2013563.","journal-title":"Computational Optimization and Applications"},{"key":"2674_CR19","doi-asserted-by":"publisher","first-page":"1416","DOI":"10.1093\/imanum\/drs056","volume":"33","author":"R Asmundis De","year":"2013","unstructured":"De Asmundis, R., di Serafino, D., Riccio, F., & Toraldo, G. (2013). On spectral properties of steepest descent methods. IMA Journal of Numerical Analysis, 33, 1416\u20131435.","journal-title":"IMA Journal of Numerical Analysis"},{"key":"2674_CR20","doi-asserted-by":"publisher","DOI":"10.1016\/j.amc.2017.07.037M","author":"D Serafino di","year":"2017","unstructured":"di Serafino, D., Ruggiero, V., Toraldo, G., & Zanni, L. (2017). On the steplength selection in gradient methods for unconstrained optimization. Applied Mathematics and Computation,. doi: 10.1016\/j.amc.2017.07.037M .","journal-title":"Applied Mathematics and Computation"},{"issue":"4","key":"2674_CR21","doi-asserted-by":"publisher","first-page":"586","DOI":"10.1109\/JSTSP.2007.910281","volume":"1","author":"MAT Figueiredo","year":"2007","unstructured":"Figueiredo, M. A. T., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1(4), 586\u2013597.","journal-title":"IEEE Journal of Selected Topics in Signal Processing"},{"issue":"2","key":"2674_CR22","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1111\/j.1469-1809.1936.tb02137.x","volume":"7","author":"RA Fisher","year":"1936","unstructured":"Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179\u2013188.","journal-title":"Annals of Eugenics"},{"issue":"1","key":"2674_CR23","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1080\/10556780600883874","volume":"22","author":"MR Guarracino","year":"2007","unstructured":"Guarracino, M. R., Cifarelli, C., Seref, O., & Pardalos, P. M. (2007). A classification method based on generalized eigenvalue problems. Optimisation Methods and Software, 22(1), 73\u201381.","journal-title":"Optimisation Methods and Software"},{"key":"2674_CR24","doi-asserted-by":"crossref","unstructured":"Guarracino, M.R., Irpino, A., Verde, R. (2010). Multiclass generalized eigenvalue proximal support vector machines. In International conference on complex, intelligent and software intensive systems (CISIS), 2010, (pp. 25\u201332). IEEE.","DOI":"10.1109\/CISIS.2010.162"},{"issue":"1","key":"2674_CR25","doi-asserted-by":"publisher","first-page":"040005","DOI":"10.1063\/1.4965317","volume":"1776","author":"MR Guarracino","year":"2016","unstructured":"Guarracino, M. R., Sangiovanni, M., Severino, G., Toraldo, G., & Viola, M. (2016). On the regularization of generalized eigenvalues classifiers. AIP Conference Proceedings, 1776(1), 040005.","journal-title":"AIP Conference Proceedings"},{"issue":"2","key":"2674_CR26","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1016\/j.artmed.2011.07.002","volume":"53","author":"MR Guarracino","year":"2011","unstructured":"Guarracino, M. R., Xanthopoulos, P., Pyrgiotakis, G., Tomaino, V., Moudgil, B. M., & Pardalos, P. M. (2011). Classification of cancer cell death with spectral dimensionality reduction and generalized eigenvalues. Artificial Intelligence in Medicine, 53(2), 119\u2013125.","journal-title":"Artificial Intelligence in Medicine"},{"key":"2674_CR27","unstructured":"Joachims, T. (1999). Transductive inference for text classification using support vector machines. In ICML, (Vol. 99, 200\u2013209)."},{"key":"2674_CR28","unstructured":"Lancaster, P., Ye, Q. (1989). Variational properties and Rayleigh quotient algorithms for symmetric matrix pencils. In The Gohberg Anniversary collection, pp. 247\u2013278. Springer."},{"key":"2674_CR29","doi-asserted-by":"crossref","unstructured":"Leordeanu, M., Zanfir, A., Sminchisescu, C. (2011). Semi-supervised learning and optimization for hypergraph matching. In IEEE international conference on computer vision (ICCV), 2011, (pp. 2274\u20132281). IEEE.","DOI":"10.1109\/ICCV.2011.6126507"},{"key":"2674_CR30","unstructured":"LapReGEC and GenSyntheticSpheres Download Page. http:\/\/www.na.icar.cnr.it\/~mariog\/lapregec.html"},{"issue":"1","key":"2674_CR31","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1109\/TPAMI.2006.17","volume":"28","author":"OL Mangasarian","year":"2006","unstructured":"Mangasarian, O. L., & Wild, E. W. (2006). Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 69\u201374.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"2674_CR32","first-page":"1149","volume":"12","author":"S Melacci","year":"2011","unstructured":"Melacci, S., & Belkin, M. (2011). Laplacian support vector machines trained in the primal. The Journal of Machine Learning Research, 12, 1149\u20131184.","journal-title":"The Journal of Machine Learning Research"},{"key":"2674_CR33","doi-asserted-by":"crossref","unstructured":"Pi, J., Fenn, M., Pardalos, P. (2016). Detecting silica-coated gold nanostars within surface-enhanced resonance Raman spectroscopy mapping via semi-supervised framework combining feature selection and classification. In 2016 32nd Southern biomedical engineering conference (SBEC), (pp. 89\u201390). IEEE.","DOI":"10.1109\/SBEC.2016.27"},{"key":"2674_CR34","unstructured":"R\u00e4tsch, G. (2001). Ida benchmark repository. World Wide Web. http:\/\/ida.first.fhg.de\/projects\/bench\/benchmarks.htm ."},{"key":"2674_CR35","unstructured":"Saad, Y. (1992). Numerical methods for large eigenvalue problems. Manchester: Manchester University Press."},{"key":"2674_CR36","unstructured":"Sinha, K. (2014). Semi-supervised learning. In C. C. Aggarwal (Ed.), Data classification: Algorithm and applications, data mining and knowledge discovery series (pp. 511\u2013536). Boca Raton, FL: CRC Press."},{"issue":"21","key":"2674_CR37","doi-asserted-by":"publisher","first-page":"2831","DOI":"10.1093\/bioinformatics\/btp467","volume":"25","author":"Z Tian","year":"2009","unstructured":"Tian, Z., Hwang, T., & Kuang, R. (2009). A hypergraph-based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge. Bioinformatics, 25(21), 2831\u20132838.","journal-title":"Bioinformatics"},{"issue":"2","key":"2674_CR38","doi-asserted-by":"publisher","first-page":"299","DOI":"10.1007\/s11590-015-0955-7","volume":"11","author":"M Viola","year":"2017","unstructured":"Viola, M., Sangiovanni, M., Toraldo, G., & Guarracino, M. R. (2017). A generalized eigenvalues classifier with embedded feature selection. Optimization Letters, 11(2), 299\u2013311.","journal-title":"Optimization Letters"},{"volume-title":"The algebraic eigenvalue problem","year":"1988","key":"2674_CR39","unstructured":"Wilkinson, J. H. (Ed.). (1988). The algebraic eigenvalue problem. New York, NY: Oxford University Press Inc."},{"key":"2674_CR40","unstructured":"Ye, Q. (1989). Variational principles and numerical algorithms for symmetric matrix pencils. Calgary, AB: University of Calgary Theses."},{"key":"2674_CR41","doi-asserted-by":"crossref","unstructured":"Zhou, T., Tao, D., Wu, X. (2010). NESVM: A fast gradient method for support vector machines. In IEEE 10th international conference on data mining (ICDM), 2010, (pp. 679\u2013688).","DOI":"10.1109\/ICDM.2010.135"},{"key":"2674_CR42","unstructured":"Zhu, X. (2010). Semi-supervised learning. In Encyclopedia of machine learning, (pp. 892\u2013897). Springer."},{"issue":"1","key":"2674_CR43","doi-asserted-by":"publisher","first-page":"1","DOI":"10.2200\/S00196ED1V01Y200906AIM006","volume":"3","author":"X Zhu","year":"2009","unstructured":"Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and machine learning, 3(1), 1\u2013130.","journal-title":"Synthesis lectures on artificial intelligence and machine learning"}],"container-title":["Annals of Operations Research"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10479-017-2674-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10479-017-2674-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10479-017-2674-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,4]],"date-time":"2019-10-04T07:58:27Z","timestamp":1570175907000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10479-017-2674-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,10,10]]},"references-count":43,"journal-issue":{"issue":"1-2","published-print":{"date-parts":[[2019,5]]}},"alternative-id":["2674"],"URL":"https:\/\/doi.org\/10.1007\/s10479-017-2674-1","relation":{},"ISSN":["0254-5330","1572-9338"],"issn-type":[{"type":"print","value":"0254-5330"},{"type":"electronic","value":"1572-9338"}],"subject":[],"published":{"date-parts":[[2017,10,10]]},"assertion":[{"value":"10 October 2017","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}