{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,4,16]],"date-time":"2023-04-16T02:12:12Z","timestamp":1681611132150},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"1-2","license":[{"start":{"date-parts":[[2012,7,18]],"date-time":"2012-07-18T00:00:00Z","timestamp":1342569600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Ann Oper Res"],"published-print":{"date-parts":[[2016,6]]},"DOI":"10.1007\/s10479-012-1184-4","type":"journal-article","created":{"date-parts":[[2012,7,18]],"date-time":"2012-07-18T21:44:54Z","timestamp":1342647894000},"page":"249-293","source":"Crossref","is-referenced-by-count":5,"title":["Uniform ergodicity of continuous-time controlled Markov chains: A survey and new results"],"prefix":"10.1007","volume":"241","author":[{"given":"Tom\u00e1s","family":"Prieto-Rumeau","sequence":"first","affiliation":[]},{"given":"On\u00e9simo","family":"Hern\u00e1ndez-Lerma","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2012,7,18]]},"reference":[{"key":"1184_CR1","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4612-3038-0","volume-title":"Continuous-time Markov chains","author":"W. J. Anderson","year":"1991","unstructured":"Anderson, W. J. (1991). Continuous-time Markov chains. New York: Springer."},{"key":"1184_CR2","volume-title":"Markov chains with stationary transition probabilities","author":"K. L. Chung","year":"1967","unstructured":"Chung, K. L. (1967). Markov chains with stationary transition probabilities (2nd ed.). Berlin: Springer.","edition":"2"},{"key":"1184_CR3","doi-asserted-by":"crossref","first-page":"1889","DOI":"10.1109\/9.471210","volume":"40","author":"J. G. Dai","year":"1995","unstructured":"Dai, J. G., & Meyn, S. P. (1995). Stability and convergence of moments for multiclass queueing networks via fluid limit models. IEEE Transactions on Automatic Control, 40, 1889\u20131904.","journal-title":"IEEE Transactions on Automatic Control"},{"key":"1184_CR4","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1287\/moor.19.3.539","volume":"19","author":"R. Dekker","year":"1994","unstructured":"Dekker, R., Hordijk, A., & Spieksma, F. M. (1994). On the relation between recurrence and ergodicity properties in denumerable Markov decision chains. Mathematics of Operations Research, 19, 539\u2013559.","journal-title":"Mathematics of Operations Research"},{"key":"1184_CR5","volume-title":"Foundations of modern analysis","author":"J. Dieudonn\u00e9","year":"1960","unstructured":"Dieudonn\u00e9, J. (1960). Foundations of modern analysis. New York: Academic Press."},{"key":"1184_CR6","doi-asserted-by":"crossref","first-page":"1671","DOI":"10.1214\/aop\/1176987798","volume":"23","author":"D. Down","year":"1995","unstructured":"Down, D., Meyn, S. P., & Tweedie, R. L. (1995). Exponential and uniform ergodicity of Markov processes. Annals of Probability, 23, 1671\u20131691.","journal-title":"Annals of Probability"},{"key":"1184_CR7","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/S0304-4149(02)00182-5","volume":"103","author":"G. Fort","year":"2002","unstructured":"Fort, G., & Moulines, E. (2002). Polynomial ergodicity of Markov transition kernels. Stochastic Processes and Their Applications, 103, 57\u201399.","journal-title":"Stochastic Processes and Their Applications"},{"key":"1184_CR8","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1214\/105051605000000115","volume":"15","author":"G. Fort","year":"2005","unstructured":"Fort, G., & Roberts, G. O. (2005). Subgeometric ergodicity of strong Markov processes. The Annals of Applied Probability, 15, 1565\u20131589.","journal-title":"The Annals of Applied Probability"},{"key":"1184_CR9","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/S0304-4149(98)00084-2","volume":"79","author":"H. Ganidis","year":"1999","unstructured":"Ganidis, H., Roynette, B., & Simonot, F. (1999). Convergence rate of semi-groups to their invariant probability. Stochastic Processes and Their Applications, 79, 243\u2013263.","journal-title":"Stochastic Processes and Their Applications"},{"key":"1184_CR10","doi-asserted-by":"crossref","first-page":"916","DOI":"10.1214\/aop\/1039639370","volume":"24","author":"P. W. Glynn","year":"1996","unstructured":"Glynn, P. W., & Meyn, S. P. (1996). A Lyapunov bound for solutions of the Poisson equation. Annals of Probability, 24, 916\u2013931.","journal-title":"Annals of Probability"},{"key":"1184_CR11","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1109\/TAC.2002.808469","volume":"48","author":"X. P. Guo","year":"2003","unstructured":"Guo, X. P., & Hern\u00e1ndez-Lerma, O. (2003). Drift and monotonicity conditions for continuous-time controlled Markov chains with an average criterion. IEEE Transactions on Automatic Control, 48, 236\u2013244.","journal-title":"IEEE Transactions on Automatic Control"},{"key":"1184_CR12","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-642-02547-1","volume-title":"Continuous-time Markov decision processes: theory and applications","author":"X. P. Guo","year":"2009","unstructured":"Guo, X. P., & Hern\u00e1ndez-Lerma, O. (2009). Continuous-time Markov decision processes: theory and applications. New York: Springer."},{"key":"1184_CR13","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1287\/moor.1100.0477","volume":"36","author":"X. P. Guo","year":"2011","unstructured":"Guo, X. P., & Piunovskiy, A. (2011). Discounted continuous-time Markov decision processes with constraints: unbounded transition and loss rates. Mathematics of Operations Research, 36, 105\u2013132.","journal-title":"Mathematics of Operations Research"},{"key":"1184_CR14","doi-asserted-by":"crossref","first-page":"730","DOI":"10.1214\/105051606000000105","volume":"16","author":"X. P. Guo","year":"2006","unstructured":"Guo, X. P., & Rieder, U. (2006). Average optimality for continuous-time Markov decision processes in polish spaces. The Annals of Applied Probability, 16, 730\u2013756.","journal-title":"The Annals of Applied Probability"},{"key":"1184_CR15","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1007\/BF02837562","volume":"14","author":"X. P. Guo","year":"2006","unstructured":"Guo, X. P., Hern\u00e1ndez-Lerma, O., & Prieto-Rumeau, T. (2006). A survey of recent results on continuous-time Markov decision processes. Top, 14, 177\u2013261.","journal-title":"Top"},{"key":"1184_CR16","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4612-0561-6","volume-title":"Further topics on discrete-time Markov control processes","author":"O. Hern\u00e1ndez-Lerma","year":"1999","unstructured":"Hern\u00e1ndez-Lerma, O., & Lasserre, J. B. (1999). Further topics on discrete-time Markov control processes. New York: Springer."},{"key":"1184_CR17","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1214\/aoap\/1015961162","volume":"12","author":"S. F. Jarner","year":"2002","unstructured":"Jarner, S. F., & Roberts, G. O. (2002). Polynomial convergence rates of Markov chains. The Annals of Applied Probability, 12, 224\u2013247.","journal-title":"The Annals of Applied Probability"},{"key":"1184_CR18","doi-asserted-by":"crossref","first-page":"551","DOI":"10.1287\/mnsc.35.5.551","volume":"35","author":"M. N. Katehakis","year":"1989","unstructured":"Katehakis, M. N., & Derman, C. (1989). On the maintenance of systems composed of highly reliable components. Management Science, 35, 551\u2013560.","journal-title":"Management Science"},{"key":"1184_CR19","doi-asserted-by":"crossref","first-page":"593","DOI":"10.1112\/plms\/s3-13.1.593","volume":"13","author":"J. F. C. Kingman","year":"1963","unstructured":"Kingman, J. F. C. (1963). Ergodic properties of continuous-time Markov processes and their discrete skeletons. Proceedings of the London Mathematical Society, 13, 593\u2013604.","journal-title":"Proceedings of the London Mathematical Society"},{"key":"1184_CR20","doi-asserted-by":"crossref","first-page":"971","DOI":"10.1287\/opre.29.5.971","volume":"29","author":"C. Lef\u00e8vre","year":"1981","unstructured":"Lef\u00e8vre, C. (1981). Optimal control of a birth and death epidemic process. Operations Research, 29, 971\u2013982.","journal-title":"Operations Research"},{"key":"1184_CR21","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1007\/s11401-006-0390-2","volume":"29","author":"Y. Liu","year":"2008","unstructured":"Liu, Y., & Hou, Z. (2008). Exponential and strong ergodicity for Markov processes with an application to queues. Chinese Annals of Mathematics. Ser. B, 29, 199\u2013206.","journal-title":"Chinese Annals of Mathematics. Ser. B"},{"key":"1184_CR22","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1017\/S1446181108000114","volume":"49","author":"Y. Liu","year":"2008","unstructured":"Liu, Y., Zhang, H., & Zhao, Y. (2008). Computable strongly ergodic rates of convergence for continuous-time Markov chains. ANZIAM Journal, 49, 463\u2013478.","journal-title":"ANZIAM Journal"},{"key":"1184_CR23","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.jmaa.2010.03.019","volume":"368","author":"Y. Liu","year":"2010","unstructured":"Liu, Y., Zhang, H., & Zhao, Y. (2010). Subgeometric ergodicity for continuous-time Markov chains. Journal of Mathematical Analysis and Applications, 368, 178\u2013189.","journal-title":"Journal of Mathematical Analysis and Applications"},{"key":"1184_CR24","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1214\/aoap\/1034968072","volume":"6","author":"R. B. Lund","year":"1996","unstructured":"Lund, R. B., Meyn, S. P., & Tweedie, R. L. (1996). Computable exponential convergence rates for stochastically ordered Markov processes. The Annals of Applied Probability, 6, 218\u2013237.","journal-title":"The Annals of Applied Probability"},{"key":"1184_CR25","doi-asserted-by":"crossref","first-page":"839","DOI":"10.1239\/jap\/1037816023","volume":"39","author":"Y. H. Mao","year":"2002","unstructured":"Mao, Y. H. (2002). Strong ergodicity for Markov processes by coupling methods. Journal of Applied Probability, 39, 839\u2013852.","journal-title":"Journal of Applied Probability"},{"key":"1184_CR26","doi-asserted-by":"crossref","first-page":"1071","DOI":"10.1239\/jap\/1101840552","volume":"41","author":"Y. H. Mao","year":"2004","unstructured":"Mao, Y. H. (2004). The eigentime identity for continuous-time ergodic Markov chains. Journal of Applied Probability, 41, 1071\u20131080.","journal-title":"Journal of Applied Probability"},{"key":"1184_CR27","doi-asserted-by":"crossref","first-page":"1964","DOI":"10.1016\/j.spa.2006.05.008","volume":"116","author":"Y. H. Mao","year":"2006","unstructured":"Mao, Y. H. (2006). Convergence rates in strong ergodicity for Markov processes. Stochastic Processes and Their Applications, 116, 1964\u20131976.","journal-title":"Stochastic Processes and Their Applications"},{"key":"1184_CR28","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4471-3267-7","volume-title":"Markov chains and stochastic stability","author":"S. P. Meyn","year":"1993","unstructured":"Meyn, S. P., & Tweedie, R. L. (1993a). Markov chains and stochastic stability. London: Springer."},{"key":"1184_CR29","doi-asserted-by":"crossref","first-page":"487","DOI":"10.2307\/1427521","volume":"25","author":"S. P. Meyn","year":"1993","unstructured":"Meyn, S. P., & Tweedie, R. L. (1993b). Stability of Markovian processes II: continuous-time processes and sampled chains. Advances in Applied Probability, 25, 487\u2013517.","journal-title":"Advances in Applied Probability"},{"key":"1184_CR30","doi-asserted-by":"crossref","first-page":"518","DOI":"10.2307\/1427522","volume":"25","author":"S. P. Meyn","year":"1993","unstructured":"Meyn, S. P., & Tweedie, R. L. (1993c). Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Advances in Applied Probability, 25, 518\u2013548.","journal-title":"Advances in Applied Probability"},{"key":"1184_CR31","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1007\/s10440-006-9060-3","volume":"92","author":"T. Prieto-Rumeau","year":"2006","unstructured":"Prieto-Rumeau, T. (2006). Blackwell optimality in the class of Markov policies for continuous-time controlled Markov chains. Acta Applicandae Mathematicae, 92, 77\u201396.","journal-title":"Acta Applicandae Mathematicae"},{"key":"1184_CR32","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/s001860400393","volume":"61","author":"T. Prieto-Rumeau","year":"2005","unstructured":"Prieto-Rumeau, T., & Hern\u00e1ndez-Lerma, O. (2005). The Laurent series, sensitive discount and Blackwell optimality for continuous-time controlled Markov chains. Mathematical Methods of Operations Research, 61, 123\u2013145.","journal-title":"Mathematical Methods of Operations Research"},{"key":"1184_CR33","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1137\/S036301290343432","volume":"45","author":"T. Prieto-Rumeau","year":"2006","unstructured":"Prieto-Rumeau, T., & Hern\u00e1ndez-Lerma, O. (2006). Bias optimality for continuous-time controlled Markov chains. SIAM Journal on Control and Optimization, 45, 51\u201373.","journal-title":"SIAM Journal on Control and Optimization"},{"key":"1184_CR34","doi-asserted-by":"crossref","first-page":"1888","DOI":"10.1137\/060668857","volume":"47","author":"T. Prieto-Rumeau","year":"2008","unstructured":"Prieto-Rumeau, T., & Hern\u00e1ndez-Lerma, O. (2008). Ergodic control of continuous-time Markov chains with pathwise constraints. SIAM Journal on Control and Optimization, 47, 1888\u20131908.","journal-title":"SIAM Journal on Control and Optimization"},{"key":"1184_CR35","doi-asserted-by":"crossref","DOI":"10.1142\/p829","volume-title":"Selected topics on continuous-time controlled Markov chains and Markov games","author":"T. Prieto-Rumeau","year":"2012","unstructured":"Prieto-Rumeau, T., & Hern\u00e1ndez-Lerma, O. (2012). Selected topics on continuous-time controlled Markov chains and Markov games. London: Imperial College Press."},{"key":"1184_CR36","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1109\/TAC.2009.2033848","volume":"55","author":"T. Prieto-Rumeau","year":"2010","unstructured":"Prieto-Rumeau, T., & Lorenzo, J. M. (2010). Approximating ergodic average reward continuous-time controlled Markov chains. IEEE Transactions on Automatic Control, 55, 201\u2013207.","journal-title":"IEEE Transactions on Automatic Control"},{"key":"1184_CR37","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1239\/jap\/1014842542","volume":"37","author":"G. O. Roberts","year":"2000","unstructured":"Roberts, G. O., & Tweedie, R. L. (2000). Rates of convergence of stochastically monotone and continuous time Markov models. Journal of Applied Probability, 37, 359\u2013373.","journal-title":"Journal of Applied Probability"},{"key":"1184_CR38","doi-asserted-by":"crossref","first-page":"775","DOI":"10.2307\/1427820","volume":"26","author":"P. Tuominen","year":"1994","unstructured":"Tuominen, P., & Tweedie, R. L. (1994). Subgeometric rates of convergence of f-ergodic Markov chains. Advances in Applied Probability, 26, 775\u2013798.","journal-title":"Advances in Applied Probability"},{"key":"1184_CR39","doi-asserted-by":"crossref","first-page":"604","DOI":"10.1007\/s10959-008-0163-9","volume":"21","author":"L. Ye","year":"2008","unstructured":"Ye, L., Guo, X. P., & Hern\u00e1ndez-Lerma, O. (2008). Existence and regularity of a nonhomogeneous transition matrix under measurability conditions. Journal of Theoretical Probability, 21, 604\u2013627.","journal-title":"Journal of Theoretical Probability"},{"key":"1184_CR40","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1239\/jap\/996986662","volume":"38","author":"Y. H. Zhang","year":"2001","unstructured":"Zhang, Y. H. (2001). Strong ergodicity for single birth processes. Journal of Applied Probability, 38, 270\u2013277.","journal-title":"Journal of Applied Probability"}],"container-title":["Annals of Operations Research"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10479-012-1184-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10479-012-1184-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10479-012-1184-4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,29]],"date-time":"2019-05-29T14:09:36Z","timestamp":1559138976000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10479-012-1184-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,7,18]]},"references-count":40,"journal-issue":{"issue":"1-2","published-print":{"date-parts":[[2016,6]]}},"alternative-id":["1184"],"URL":"https:\/\/doi.org\/10.1007\/s10479-012-1184-4","relation":{},"ISSN":["0254-5330","1572-9338"],"issn-type":[{"value":"0254-5330","type":"print"},{"value":"1572-9338","type":"electronic"}],"subject":[],"published":{"date-parts":[[2012,7,18]]}}}