{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:21:48Z","timestamp":1727065308796},"reference-count":178,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2021,2,4]],"date-time":"2021-02-04T00:00:00Z","timestamp":1612396800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,2,4]],"date-time":"2021-02-04T00:00:00Z","timestamp":1612396800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"name":"Airbus Cybersecurity"},{"DOI":"10.13039\/100010661","name":"Horizon 2020 Framework Programme","doi-asserted-by":"publisher","award":["SeCoIIA Project"],"id":[{"id":"10.13039\/100010661","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100009077","name":"ITEA3","doi-asserted-by":"publisher","award":["CyberFactory#1"],"id":[{"id":"10.13039\/501100009077","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Artif Intell Rev"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1007\/s10462-020-09942-2","type":"journal-article","created":{"date-parts":[[2021,2,4]],"date-time":"2021-02-04T05:02:54Z","timestamp":1612414974000},"page":"3849-3886","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":132,"title":["Artificial intelligence, cyber-threats and Industry 4.0: challenges and opportunities"],"prefix":"10.1007","volume":"54","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9328-9581","authenticated-orcid":false,"given":"Adrien","family":"B\u00e9cue","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2519-9859","authenticated-orcid":false,"given":"Isabel","family":"Pra\u00e7a","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3357-1195","authenticated-orcid":false,"given":"Jo\u00e3o","family":"Gama","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,2,4]]},"reference":[{"key":"9942_CR1","doi-asserted-by":"crossref","first-page":"52138","DOI":"10.1109\/ACCESS.2018.2870052","volume":"6","author":"A Adadi","year":"2018","unstructured":"Adadi A, Berrada M (2018) Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6:52138\u201352160","journal-title":"IEEE Access"},{"key":"9942_CR2","doi-asserted-by":"crossref","unstructured":"Aickelin U, Greensmith J, Kim J, Bentley PJ, Twycross J Tedesco (2007) Immune system approaches to intrusion detection\u2014a review. Nat Comput 413\u2013466","DOI":"10.1007\/s11047-006-9026-4"},{"key":"9942_CR3","doi-asserted-by":"crossref","unstructured":"Althubiti SA, Jones EM, Roy K (2018) LSTM for anomaly-based network intrusion detection. In: 2018 28th International telecommunication networks and applications conference (ITNAC), pp 1\u20133","DOI":"10.1109\/ATNAC.2018.8615300"},{"key":"9942_CR4","doi-asserted-by":"crossref","unstructured":"Alzantot M, Sharma Y, Chakraborty S, Zhang H, Hsieh C-J, Srivastava M (2018) Genattack: practical black-box attacks with gradient-free optimization","DOI":"10.1145\/3321707.3321749"},{"key":"9942_CR5","doi-asserted-by":"crossref","unstructured":"Amor NB, Benferhat S, Elouedi Z (2004) Naive bayes vs decision trees in intrusion detection systems. In: Proceedings of the 2004 ACM symposium on applied computing, SAC\u201904. ACM, New York, pp 420\u2013424","DOI":"10.1145\/967900.967989"},{"key":"9942_CR6","doi-asserted-by":"crossref","unstructured":"Anderson R, Fuloria S (2010) Who controls the off switch? In: 1st IEEE international conference on smart grid communications. IEEE, Los Alamitos, pp 96\u2013101","DOI":"10.1109\/SMARTGRID.2010.5622026"},{"key":"9942_CR7","unstructured":"Anderson D, Frivold T, Valdes A (1995) Next-generation intrusion detection expert system (NIDES) a summary"},{"key":"9942_CR8","doi-asserted-by":"crossref","unstructured":"Anderson HS, Woodbridge J, Filar B (2016) DeepDGA: adversarially-tuned domain generation and detection. In: Proceedings of the 2016 ACM workshop on artificial intelligence and security. ACM, New York, pp 13\u201321","DOI":"10.1145\/2996758.2996767"},{"key":"9942_CR9","unstructured":"ANSSI ICS\u00a0Working Group (2014) Managing cybersecurity of industrial control systems"},{"key":"9942_CR10","unstructured":"Autodesk (2015) Autodesk and airbus show the future of aerospace design and manufacture in pioneering generatively designed 3d printed partition. Accessed 3 June 2019"},{"key":"9942_CR11","unstructured":"Axelsson S (2000) Intrusion detection systems: a survey and taxonomy. Technical report"},{"key":"9942_CR12","unstructured":"Bahnsen AC, Torroledo I, Camacho D, Villegas S (2018) DeepPhish: simulating malicious AI. In: Proceedings of the 2018 APWG symposium on electronic crime research (eCrime\u201918), pp 1\u20138"},{"key":"9942_CR13","unstructured":"Balu A, Lore KG, Young G, Krishnamurthy A, Sarkar S (2016) A deep 3d convolutional neural network based design for manufacturability framework"},{"issue":"7","key":"9942_CR14","doi-asserted-by":"publisher","first-page":"2179","DOI":"10.1080\/00207543.2018.1530476","volume":"57","author":"G Baryannis","year":"2018","unstructured":"Baryannis G, Validi S, Dani S, Antoniou G (2018) Supply chain risk management and artificial intelligence: state of the art and future research directions. Int J Prod Res 57(7):2179\u20132202. https:\/\/doi.org\/10.1080\/00207543.2018.1530476","journal-title":"Int J Prod Res"},{"key":"9942_CR15","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.jclepro.2018.01.173","volume":"181","author":"D Bechtsis","year":"2018","unstructured":"Bechtsis D, Tsolakis N, Vlachos D, Srai JS (2018) Intelligent autonomous vehicles in digital supply chains: a framework for integrating innovations towards sustainable value networks. J Clean Prod 181:60\u201371","journal-title":"J Clean Prod"},{"key":"9942_CR16","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.patcog.2018.07.023","volume":"84","author":"B Biggio","year":"2018","unstructured":"Biggio B, Roli F (2018) Wild patterns: ten years after the rise of adversarial machine learning. Pattern Recognit 84:317\u2013331","journal-title":"Pattern Recognit"},{"key":"9942_CR17","unstructured":"Bilge L, Kirda E, Kruegel C, Balduzzi M (2011) Exposure: finding malicious domains using passive DNS analysis"},{"key":"9942_CR18","doi-asserted-by":"crossref","unstructured":"Bilge L, Balzarotti D, Robertson W, Kirda E, Kruegel C (2012) Disclosure: detecting botnet command and control servers through large-scale netflow analysis. In: ACSAC, 28th annual computer security applications conference, December 3\u20137. Orlando, Florida, USA, Orlando, UNITED STATES","DOI":"10.1145\/2420950.2420969"},{"issue":"2","key":"9942_CR19","first-page":"123","volume":"24","author":"L Breiman","year":"1996","unstructured":"Breiman L (1996) Bagging predictors. Mach Learn 24(2):123\u2013140","journal-title":"Mach Learn"},{"issue":"1","key":"9942_CR20","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman L (2001) Random forests. Mach Learn 45(1):5\u201332","journal-title":"Mach Learn"},{"key":"9942_CR21","unstructured":"Brundage M, Avin S, Clark J, Toner H, Eckersley P, Garfinkel B, Dafoe A, Scharre P, Zeitzoff T, Filar B, Anderson H, Roff H, Allen GC, Steinhardt J, Flynn C, \u00d3h\u00c9igeartaigh S, Beard S, Belfield H, Farquhar S, Lyle C (2018) The malicious use of artificial intelligence: forecasting, prevention, and mitigation"},{"issue":"2","key":"9942_CR22","doi-asserted-by":"crossref","first-page":"1153","DOI":"10.1109\/COMST.2015.2494502","volume":"18","author":"AL Buczak","year":"2016","unstructured":"Buczak AL, Guven E (2016) A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun Surv Tutor 18(2):1153\u20131176","journal-title":"IEEE Commun Surv Tutor"},{"key":"9942_CR23","doi-asserted-by":"publisher","unstructured":"\u00c7ali\u015f B, Bulkan S (2013) A research survey: review of AI solution strategies of job shop scheduling problem. J Intell Manuf 26(5):961\u2013973. https:\/\/doi.org\/10.1007\/s10845-013-0837-8","DOI":"10.1007\/s10845-013-0837-8"},{"issue":"1","key":"9942_CR24","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1177\/1063293X14568814","volume":"23","author":"S Choi","year":"2015","unstructured":"Choi S, Jung K, Noh SD (2015) Virtual reality applications in manufacturing industries: past research, present findings, and future directions. Concurr Eng 23(1):40\u201363","journal-title":"Concurr Eng"},{"key":"9942_CR25","doi-asserted-by":"crossref","unstructured":"Chung K, Kalbarczyk ZT, Iyer RK (2019) Availability attacks on computing systems through alteration of environmental control: smart malware approach. In: Proceedings of the 10th ACM\/IEEE international conference on cyber-physical systems. ACM, New York, pp 1\u201312","DOI":"10.1145\/3302509.3311041"},{"key":"9942_CR27","doi-asserted-by":"crossref","unstructured":"Cohen G (1989) Using AI techniques to optimize manufacturing shop-floor operations. Eng Appl Artif Intell 2(3):238\u2013246","DOI":"10.1016\/0952-1976(89)90007-9"},{"key":"9942_CR28","unstructured":"Creech G (2014) Developing a high-accuracy cross platform host-based intrusion detection system capable of reliably detecting zero-day attacks"},{"key":"9942_CR29","doi-asserted-by":"crossref","unstructured":"Creech G, Hu J (2013) Generation of a new ids test dataset: time to retire the KDD collection, pp 4487\u20134492","DOI":"10.1109\/WCNC.2013.6555301"},{"key":"9942_CR30","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1109\/TC.2013.13","volume":"63","author":"G Creech","year":"2014","unstructured":"Creech G, Hu J (2014) A semantic approach to host-based intrusion detection systems using contiguousand discontiguous system call patterns. IEEE Trans Comput 63:807\u2013819, 04","journal-title":"IEEE Trans Comput"},{"key":"9942_CR31","unstructured":"Culp C, Haberl J, Norford L, Brothers PW, Hall JD (1990) The impact of AI technology within the HVAC industry. ASHRAE J (Am Soc Heat Refrig Air-Conditioning Eng) (USA) 32(12):12\u201322"},{"key":"9942_CR32","unstructured":"Cunningham P, Delany SJ (2007) k-nearest neighbour classifiers: 2nd edition. https:\/\/arxiv.org\/2004.04523"},{"key":"9942_CR33","doi-asserted-by":"crossref","unstructured":"Czimmermann T, Ciuti G, Milazzo M, Chiurazzi M, Roccella S, Oddo CM, Dario P (2020) Visual-based defect detection and classification approaches for industrial applications\u2014a survey. Sensors","DOI":"10.3390\/s20051459"},{"key":"9942_CR34","unstructured":"Debar H, Didier S, Becker M (1992) A neural network component for an intrusion detection system"},{"key":"9942_CR35","unstructured":"Deutsches\u00a0Institut f\u00fcr Normung\u00a0eV (2016) Reference architecture model industrie 4.0 (RAMI4.0)"},{"issue":"10","key":"9942_CR36","doi-asserted-by":"crossref","first-page":"1781","DOI":"10.1109\/JSAC.2006.877131","volume":"24","author":"S Dharmapurikar","year":"2006","unstructured":"Dharmapurikar S, Lockwood JW (2006) Fast and scalable pattern matching for network intrusion detection systems. IEEE J Sel A Commun 24(10):1781\u20131792","journal-title":"IEEE J Sel A Commun"},{"key":"9942_CR37","doi-asserted-by":"crossref","unstructured":"Domb M, Bonchek-Dokow E, Leshem G (2016) Lightweight adaptive random-forest for IoT rule generation and execution. J Inf Secur Appl","DOI":"10.1016\/j.jisa.2017.03.001"},{"key":"9942_CR38","unstructured":"Donlon M (2016) Machine learning in hvac controls. http:\/\/automatedbuildings.com\/news\/jun16\/articles\/computrols\/160525111606computrols.html. Accessed 3 June 2019"},{"key":"9942_CR39","unstructured":"Eisenstein PA (2017) European car plants halted by WannaCry ransomware attack. https:\/\/www.nbcnews.com\/business\/autos\/european-car-plants-halted-wannacry-ransomware-attack-n759496. Accessed 10 May 2020"},{"key":"9942_CR40","unstructured":"Emanuilov I (2017) Autonomous systems in aviation: between product liability and innovation"},{"key":"9942_CR41","unstructured":"Ertoz L, Eilertson E, Lazarevic A, Tan P, Srivava J, Kumar V, Dokas P (2004) Minds\u2014minnesota intrusion detection system. In: Next generation data mining. MIT Press, Boston"},{"key":"9942_CR42","unstructured":"European commission\u2014digital transformation monitor \u201cGermany: Industry 4.0\u201d (2017). https:\/\/ec.europa.eu\/growth\/tools-databases\/dem\/monitor\/sites\/default\/files\/DTM_Industrie%204.0.pdf"},{"key":"9942_CR43","unstructured":"European Commission (2009) European machinery directive. Accessed 3 June 2019"},{"key":"9942_CR44","unstructured":"Factories of\u00a0the Future\u00a0PPP (2020). Strategic multi-annual roadmap. https:\/\/www.effra.eu\/sites\/default\/files\/factories_of_the_future_2020_roadmap.pdf"},{"issue":"1","key":"9942_CR45","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/jcss.1997.1504","volume":"55","author":"Y Freund","year":"1997","unstructured":"Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119\u2013139","journal-title":"J Comput Syst Sci"},{"key":"9942_CR46","doi-asserted-by":"crossref","unstructured":"Fuente J, Saludes S (2000) Fault detection and isolation in a non-linear plant via neural networks, pp 463\u2013468","DOI":"10.1016\/S1474-6670(17)37402-5"},{"key":"9942_CR47","doi-asserted-by":"crossref","unstructured":"Fuller A, Fan Z, Day C, Barlow C (2019) Digital twin: enabling technologies, challenges and open research. arXiv e-prints","DOI":"10.1109\/ACCESS.2020.2998358"},{"key":"9942_CR48","unstructured":"Gacek S (2012) CNC machine group scheduling methods in a multitasking system. In: Proceedings of Carpathian logistics congress 2012, Jesenik, Czech Republic"},{"key":"9942_CR49","doi-asserted-by":"crossref","unstructured":"Gao D, Reiter MK, Song D (2006) Behavioral distance measurement using hidden Markov models. In: Proceedings of the 9th international conference on recent advances in intrusion detection, RAID\u201906. Springer, Berlin, pp 19\u201340","DOI":"10.1007\/11856214_2"},{"key":"9942_CR50","unstructured":"Gau J, Evans R (2016) DeepMind AI reduces google data centre cooling bill by 40 percent"},{"key":"9942_CR51","doi-asserted-by":"crossref","unstructured":"Gharibian F, Ghorbani A (2007) Comparative study of supervised machine learning techniques for intrusion detection, pp 350\u2013358","DOI":"10.1109\/CNSR.2007.22"},{"key":"9942_CR52","unstructured":"Gonzalez FA (2003) A study of artificial immune systems applied to anomaly detection. PhD thesis. AAI3092441"},{"key":"9942_CR53","unstructured":"Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Proceedings of the 27th international conference on neural information processing systems, NIPS\u201914, vol 2. MIT Press, Cambridge, pp 2672\u20132680"},{"key":"9942_CR54","doi-asserted-by":"crossref","first-page":"3622","DOI":"10.1109\/TIE.2009.2036033","volume":"57","author":"W Granzer","year":"2010","unstructured":"Granzer W, Praus F, Kastner W (2010) Security in building automation systems. IEEE Trans Ind Electron 57:3622\u20133630","journal-title":"IEEE Trans Ind Electron"},{"key":"9942_CR55","doi-asserted-by":"crossref","unstructured":"Grapentin A, Plauth M, Polze A (2017) MemSpaces: Evaluating the tuple space paradigm in the context of memory-centric architectures. In: 2017 Fifth international symposium on computing and networking (CANDAR), pp 284\u2013290","DOI":"10.1109\/CANDAR.2017.55"},{"key":"9942_CR56","doi-asserted-by":"crossref","unstructured":"Grewal G, Areibi S, Westrik M, Abuowaimer Z, Zhao B (2017) A machine learning framework for FPGA placement (abstract only). In: Proceedings of the 2017 ACM\/SIGDA international symposium on field-programmable gate arrays, FPGA\u201917. ACM, New York, pp 286\u2013286","DOI":"10.1145\/3020078.3021765"},{"key":"9942_CR57","doi-asserted-by":"crossref","DOI":"10.7551\/mitpress\/7011.001.0001","volume-title":"Unsupervised learning: foundations of neural computation","author":"G Hinton","year":"1999","unstructured":"Hinton G, Sejnowski T (1999) Unsupervised learning: foundations of neural computation. MIT Press, Cambridge"},{"key":"9942_CR58","unstructured":"Hitaj B, Gasti P, Ateniese G, Perez-Cruz F (2017) Passgan: a deep learning approach"},{"key":"9942_CR59","unstructured":"Hu W, Tan Y (2017) Generating adversarial malware examples for black-box attacks based on GAN"},{"key":"9942_CR60","unstructured":"Hu W, Liao Y, Vemuri VR (2003) Robust support vector machines for anomaly detection in computer security. In: Proceedings of the 2003 international conference on machine learning and applications\u2014ICMLA 2003, June 23\u201324, 2003, Los Angeles, California, USA, pp 168\u2013174"},{"key":"9942_CR61","doi-asserted-by":"crossref","unstructured":"Hu W, Hu W, Maybank S (2008) Adaboost-based algorithm for network intrusion detection. Trans Syst Man Cybern Part B 38(2):577\u2013583","DOI":"10.1109\/TSMCB.2007.914695"},{"issue":"6","key":"9942_CR62","doi-asserted-by":"crossref","first-page":"1802","DOI":"10.1109\/JIOT.2017.2703172","volume":"4","author":"A Humayed","year":"2017","unstructured":"Humayed A, Lin J, Li F, Luo B (2017) Cyber-physical systems security\u2014a survey. IEEE Internet Things J 4(6):1802\u20131831","journal-title":"IEEE Internet Things J"},{"key":"9942_CR63","unstructured":"Hutchins EM, Cloppert MJ, Amin RM (2011) Intelligence-driven computer network defense informed by analysis of adversary campaigns and intrusion kill chains. Lead Issues Inf Warf Secur Res 1(1): 80"},{"issue":"3","key":"9942_CR64","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1109\/32.372146","volume":"21","author":"K Ilgun","year":"1995","unstructured":"Ilgun K, Kemmerer RA, Porras PA (1995) State transition analysis: a rule-based intrusion detection approach. IEEE Trans Softw Eng 21(3):181\u2013199","journal-title":"IEEE Trans Softw Eng"},{"key":"9942_CR65","doi-asserted-by":"crossref","unstructured":"Jemili F, Zaghdoud M, Ahmed MB (2007) A framework for an adaptive intrusion detection system using Bayesian network, pp 66\u201370","DOI":"10.1109\/ISI.2007.379535"},{"key":"9942_CR66","doi-asserted-by":"crossref","DOI":"10.1007\/978-0-387-68282-2","volume-title":"Bayesian networks and decision graphs","author":"F Jensen","year":"2007","unstructured":"Jensen F, Nielsen TD (2007) Bayesian networks and decision graphs, 2nd edn. Springer Publishing Company, Incorporated, Berlin","edition":"2"},{"key":"9942_CR67","doi-asserted-by":"crossref","unstructured":"Ji W, Wang L (2017) Big data analytics based fault prediction for shop floor scheduling. J Manuf Syst 43(Part 1):187\u2013194","DOI":"10.1016\/j.jmsy.2017.03.008"},{"key":"9942_CR68","doi-asserted-by":"crossref","unstructured":"Kalajdzic K, Jegourel C, Bartocci E, Legay A, Smolka S, Grosu R (2015) Model checking as control: feedback control for statistical model checking of cyber-physical systems","DOI":"10.1007\/978-3-319-47166-2_4"},{"key":"9942_CR69","doi-asserted-by":"crossref","unstructured":"Kaloudi N, Li J (2020) The AI-based cyber threat landscape: a survey. ACM Comput Surv 53(1), Article 20","DOI":"10.1145\/3372823"},{"key":"9942_CR70","doi-asserted-by":"crossref","first-page":"1253","DOI":"10.1016\/j.neucom.2014.08.070","volume":"149","author":"A Karami","year":"2015","unstructured":"Karami A, Guerrero-Zapata M (2015) A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks. Neurocomputing 149:1253\u20131269, 02","journal-title":"Neurocomputing"},{"key":"9942_CR71","unstructured":"Kirat D, Jang J, Stoecklin M (2018) Deeplocker\u2014concealing targeted attacks with AI locksmithing. In: Proceedings of the black hat USA conference"},{"key":"9942_CR72","doi-asserted-by":"crossref","unstructured":"Knowles W, Prince D, Hutchison D, Diss JP, Jones K (2015) A survey of cyber security management in industrial control systems. Int J Crit Infrastruct Prot 9","DOI":"10.1016\/j.ijcip.2015.02.002"},{"issue":"8","key":"9942_CR73","doi-asserted-by":"crossref","first-page":"625","DOI":"10.1016\/j.cose.2011.08.009","volume":"30","author":"C Kolias","year":"2011","unstructured":"Kolias C, Kambourakis G, Maragoudakis M (2011) Swarm intelligence in intrusion detection: a survey. Comput Secur 30(8):625\u2013642","journal-title":"Comput Secur"},{"key":"9942_CR74","unstructured":"Korvesis P (2017) Machine learning for predictive maintenance in aviation. Artificial intelligence[cs.AI]"},{"key":"9942_CR75","unstructured":"Kumar K (2017) Intrusion detection and prevention system in enhancing security of cloud environment. 6:2278\u20131323"},{"key":"9942_CR76","unstructured":"Kumar S, Spafford EH (1994) A pattern matching model for misuse intrusion detection. Technical report, Purdue University"},{"key":"9942_CR77","unstructured":"Laura B, Davoli L, Medioli A, Marchini PL, Ferrari G (2019) Toward industry 4.0 with IoT: optimizing business processes in an evolving manufacturing factory"},{"key":"9942_CR78","doi-asserted-by":"publisher","unstructured":"Lee W, Stolfo SJ (2020) A framework for constructing features and models for intrusion detection systems. Association for Computing Machinery, New York, pp 227\u2013261. https:\/\/doi.org\/10.1145\/382912.382914","DOI":"10.1145\/382912.382914"},{"key":"9942_CR79","doi-asserted-by":"crossref","unstructured":"Lee J-H, Lee J-H, Sohn SG, Ryu JH, Chung Tai-Myoung M (2008) Effective value of decision tree with KDD 99 intrusion detection datasets for intrusion detection system. In: 2008 10th International conference on advanced communication technology, vol 2, pp 1170\u20131175","DOI":"10.1109\/ICACT.2008.4493974"},{"key":"9942_CR80","doi-asserted-by":"crossref","unstructured":"Lee J, Davari H, Singh J, Pandhare V (2018) Industrial artificial intelligence for industry 4.0-based manufacturing systems","DOI":"10.1016\/j.mfglet.2018.09.002"},{"key":"9942_CR81","doi-asserted-by":"crossref","unstructured":"Li J (2018) Cyber security meets artificial intelligence: a survey. Front Inf Technol Electron Eng 1462\u20131474","DOI":"10.1631\/FITEE.1800573"},{"key":"9942_CR82","doi-asserted-by":"publisher","unstructured":"Li B, Hou B, Yu W, Lu X, Yang C (2017) Applications of artificial intelligence in intelligent manufacturing: a review. Front Inf Technol Electron Eng 18(1):86\u201396. https:\/\/doi.org\/10.1631\/FITEE.1601885","DOI":"10.1631\/FITEE.1601885"},{"key":"9942_CR83","unstructured":"Lightman S, Abrams M, Hahn A, Stouffer K, Pillitteri V (2015) Guide to industrial control systems (ICS) security"},{"key":"9942_CR84","doi-asserted-by":"crossref","unstructured":"Lim Y, Ramasamy S, Gardi A, Kistan T, Sabatini R (2017) Cognitive human\u2013machine interfaces and interactions for unmanned aircraft. J Intell Robotic Syst 10","DOI":"10.1007\/s10846-017-0648-9"},{"key":"9942_CR85","unstructured":"Lin S-W, Miller B, Durand J, Bleakley G, Chigani A, Martin R, Murphy B, Crawford M (2019) The industrial internet of things volume g1: reference architecture. 6"},{"key":"9942_CR86","doi-asserted-by":"crossref","unstructured":"Lippmann RP, Fried DJ, Graf I, Haines JW, Kendall K, Mcclung DM, Weber D, Webster SE, Wyschogrod D, Cunningham RK, Zissman MA (2000) Evaluating intrusion detection systems: the 1998 DARPA off-line intrusion detection evaluation","DOI":"10.1007\/3-540-39945-3_11"},{"issue":"4","key":"9942_CR87","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1016\/S1389-1286(00)00139-0","volume":"34","author":"R Lippmann","year":"2000","unstructured":"Lippmann R, Haines JW, Fried DJ, Korba J, Das K (2000) The 1999 DARPA off-line intrusion detection evaluation. Comput Netw 34(4):579\u2013595","journal-title":"Comput Netw"},{"key":"9942_CR88","unstructured":"Lowe\u2019s Company Incorporated (2016) Lowe\u2019s introduces LoweBot\u2014the next generation robot to enhance the home improvement shopping experience in the bay area"},{"key":"9942_CR89","doi-asserted-by":"crossref","unstructured":"Lu Y, Xu X (2019) Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services. Robotics Comput Integr Manuf 57:92\u2013102","DOI":"10.1016\/j.rcim.2018.11.006"},{"key":"9942_CR90","unstructured":"Ludovic ME (1998) Gassata, a genetic algorithm as an alternative tool for security audit trails analysis. In: Proceedings of the first international work-shop on the recent advances in intrusion detection"},{"key":"9942_CR91","unstructured":"Lunt TF, Jagannathan R (1988) A prototype real-time intrusion-detection expert system. In: Proceedings of the 1988 IEEE conference on security and privacy, SP\u201988. IEEE Computer Society, Washington, DC, pp 59\u201366"},{"key":"9942_CR92","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1002\/1098-111X(200008)15:8<687::AID-INT1>3.0.CO;2-X","volume":"15","author":"J Luo","year":"2000","unstructured":"Luo J, Bridges S (2000) Mining fuzzy association rules and fuzzy frequency episodes for intrusion detection. Int J Intell Syst 15:687\u2013703, 08","journal-title":"Int J Intell Syst"},{"key":"9942_CR93","unstructured":"Luo Y, Xiao Y, Cheng L, Peng G, Yao DD (2020) Deep learning-based anomaly detection in cyber-physical systems: progress and opportunities. arXiv:2003.13213"},{"key":"9942_CR94","doi-asserted-by":"crossref","unstructured":"Makkar S, Devi G, Solanki V (2020) Applications of machine learning techniques in supply chain optimization","DOI":"10.1007\/978-981-13-8461-5_98"},{"key":"9942_CR95","unstructured":"Malatras A, Skouloudi C, Koukounas A (2019) Industry 4.0 cybersecurity: challenges & recommendations"},{"key":"9942_CR96","doi-asserted-by":"crossref","unstructured":"Mantere M, Sailio M, Noponen S (2014) A module for anomaly detection in ICS networks. In: Proceedings of the 3rd international conference on high confidence networked systems, HiCoNS\u201914. Association for Computing Machinery, New York, pp 49\u201356","DOI":"10.1145\/2566468.2566478"},{"issue":"6","key":"9942_CR97","first-page":"2019","volume":"5","author":"S Mao","year":"2019","unstructured":"Mao S, Wang B, Tang Y, Qian F (2019) Opportunities and challenges of artificial intelligence for green manufacturing in the process industry. Engineering 5(6):2019","journal-title":"Engineering"},{"key":"9942_CR98","doi-asserted-by":"crossref","unstructured":"Mazini M, Shirazi B, Mahdavi I (2018) Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and AdaBoost algorithms. J King Saud Univ Comput Inf Sci","DOI":"10.1016\/j.jksuci.2018.03.011"},{"key":"9942_CR99","doi-asserted-by":"crossref","unstructured":"Moon I, Lee GM, Park J, Kiritsis D, von Cieminski G (2018) Advances in production management systems. Production management for data-driven, intelligent, collaborative, and sustainable manufacturing. In: IFIP WG 5.7 international conference, APMS proceedings. Part I, Seoul, Korea, p 2018","DOI":"10.1007\/978-3-319-99704-9"},{"key":"9942_CR100","doi-asserted-by":"crossref","unstructured":"Morris T, Gao W (2014) Industrial control system traffic data sets for intrusion detection research. Int Conf Crit Infrast Prot 441:65\u201378","DOI":"10.1007\/978-3-662-45355-1_5"},{"key":"9942_CR101","doi-asserted-by":"crossref","unstructured":"Mosli R, Wright M, Yuan B, Pan Y (2019) They might not be giants: crafting black-box adversarial examples with fewer queries using particle swarm optimization","DOI":"10.1007\/978-3-030-59013-0_22"},{"issue":"2","key":"9942_CR102","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.jnca.2004.01.003","volume":"28","author":"S Mukkamala","year":"2005","unstructured":"Mukkamala S, Sung AH, Abraham A (2005) Intrusion detection using an ensemble of intelligent paradigms. J Netw Comput Appl 28(2):167\u2013182","journal-title":"J Netw Comput Appl"},{"key":"9942_CR103","unstructured":"Nguyen TT, Reddi VJ (2019) Deep reinforcement learning for cyber security. CoRR. arXiv:1906.05799"},{"key":"9942_CR104","doi-asserted-by":"crossref","first-page":"5947","DOI":"10.3233\/JIFS-169836","volume":"35","author":"L Nicholas","year":"2018","unstructured":"Nicholas L, Ooi SY, Pang Y-H, Hwang SO, Tan S-Y (2018) Study of long short-term memory in flow-based network intrusion detection system. J Intell Fuzzy Syst 35:5947\u20135957","journal-title":"J Intell Fuzzy Syst"},{"key":"9942_CR105","unstructured":"Offshore Engineering (2017) Rosneft, maersk hit by petya cyber attack. https:\/\/www.oedigital.com\/news\/446237-rosneft-maersk-hit-by-petya-cyber-attack. Accessed 10 May 2020"},{"key":"9942_CR106","doi-asserted-by":"crossref","unstructured":"Otto B, Steinbu\u00df S, International Data Spaces Association (2019) Reference architecture model. Anna-Louisa-Karsch-Str. 210178 Berlin, Germany","DOI":"10.1007\/978-3-662-58134-6_8"},{"key":"9942_CR107","unstructured":"Pagnoni A, Visconti A (2004) NAIS: intrusion detection via native immune system. In: Proceedings of the 10th international conference on cybernetics and information technologies, systems and applications. Hsing-Wei Chu et al"},{"key":"9942_CR108","doi-asserted-by":"crossref","unstructured":"Papernot N, McDaniel P, Goodfellow I, Jha S, Celik ZB, Swami A (2017) Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia conference on computer and communications security, ASIA CCS\u201917. ACM, New York, pp 506\u2013519","DOI":"10.1145\/3052973.3053009"},{"key":"9942_CR109","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.promfg.2018.12.017","volume":"28","author":"HS Park","year":"2019","unstructured":"Park HS, Phuong DX, Kumar S (2019) AI based injection molding process for consistent product quality. Procedia Manuf 28:102\u2013106","journal-title":"Procedia Manuf"},{"key":"9942_CR110","unstructured":"Petro D, Morris B (2017) Weaponizing machine learning: humanity was overrated anyway. In: Proceedings of DEF CON 25"},{"key":"9942_CR111","unstructured":"Phelan N (2016) Designing with machine learning"},{"key":"9942_CR112","doi-asserted-by":"crossref","unstructured":"Pinker E (2018) Reporting accuracy of rare event classifiers. NPJ Digit Med 1(1):1\u20132","DOI":"10.1038\/s41746-018-0062-0"},{"issue":"4","key":"9942_CR176","doi-asserted-by":"crossref","first-page":"2776","DOI":"10.4249\/scholarpedia.2776","volume":"4","author":"R Polikar","year":"2009","unstructured":"Polikar R (2009) Ensemble learning. Scholarpedia 4(4):2776","journal-title":"Scholarpedia"},{"key":"9942_CR113","unstructured":"Porras PA, Neumann PG (1997) EMERALD: event monitoring enabling responses to anomalous live disturbances. In: 1997 National information systems security conference"},{"key":"9942_CR114","doi-asserted-by":"crossref","first-page":"909","DOI":"10.3390\/app9050909","volume":"9","author":"S Qiu","year":"2019","unstructured":"Qiu S, Liu Q, Zhou S, Wu C (2019) Review of artificial intelligence adversarial attack and defense technologies. Appl Sci 9:909","journal-title":"Appl Sci"},{"key":"9942_CR115","doi-asserted-by":"crossref","unstructured":"Rabiner LR, Juang BH (1986) An introduction to hidden Markov models. IEEE ASSp Magazine","DOI":"10.1109\/MASSP.1986.1165342"},{"issue":"3","key":"9942_CR116","first-page":"48:1","volume":"51","author":"PAA Resende","year":"2018","unstructured":"Resende PAA, Drummond AC (2018) A survey of random forest based methods for intrusion detection systems. ACM Comput Surv 51(3):48:1\u201348:36","journal-title":"ACM Comput Surv"},{"key":"9942_CR117","unstructured":"Roesch M (1999) Snort: lightweight intrusion detection for networks. In: Proceedings of LISA\u201999: 13th systems administration conference, volume\u00a099 of Lisa"},{"key":"9942_CR118","unstructured":"Robert Friedman Jerome Hastie, Trevor Tibshirani (2009) Data Mining, Inference, and Prediction, The Elements of Statistical Learning"},{"key":"9942_CR119","volume-title":"Artificial intelligence: a modern approach","author":"S Russell","year":"2009","unstructured":"Russell S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall Press, Upper Saddle River","edition":"3"},{"key":"9942_CR120","unstructured":"Saint-Gobain (2017) Press release\u2014cyber-attack update. https:\/\/www.saint-gobain.com\/sites\/sgcom.master\/files\/03-07-2017_cp_va.pdf. Accessed 10 May 2020"},{"issue":"3","key":"9942_CR121","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1147\/rd.33.0210","volume":"3","author":"AL Samuel","year":"1959","unstructured":"Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3(3):210\u2013229","journal-title":"IBM J Res Dev"},{"key":"9942_CR122","unstructured":"Santofimia-Romero M-J, del Toro-Garc\u00eda X, L\u00f3pez-L\u00f3pez J-C (2011) Artificial intelligence techniques for smart grid applications"},{"key":"9942_CR123","doi-asserted-by":"crossref","unstructured":"Schneible J, Lu A (2017) Anomaly detection on the edge, pp 678\u2013682","DOI":"10.1109\/MILCOM.2017.8170817"},{"key":"9942_CR124","doi-asserted-by":"publisher","unstructured":"Schneier B (2018) Artificial intelligence and the attack\/defense balance. IEEE Secur Priv 2 16(2):96. https:\/\/doi.org\/10.1109\/MSP.2018.1870857","DOI":"10.1109\/MSP.2018.1870857"},{"key":"9942_CR125","unstructured":"Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M, Crespo J-F, Dennison D (2015) Hidden technical debt in machine learning systems. In: Proceedings of the 28th international conference on neural information processing systems, NIPS\u201915, vol 2. MIT Press, Cambridge, pp 2503\u20132511"},{"key":"9942_CR126","unstructured":"Sebring MM, Shellhouse E, Hanna MF, Whitehurst RA (1988) Expert systems in intrusion detection: a case study"},{"issue":"2016","key":"9942_CR127","first-page":"1","volume":"37","author":"J Seymour","year":"2016","unstructured":"Seymour J, Tully P (2016) Weaponizing data science for social engineering: automated E2E spear phishing on twitter. Proc Black Hat USA 37(2016):1\u201339","journal-title":"Proc Black Hat USA"},{"key":"9942_CR128","doi-asserted-by":"crossref","unstructured":"Sharafaldin I, Lashkari AH, Ghorbani A (2018) Toward generating a new intrusion detection dataset and intrusion traffic characterization, pp 108\u2013116","DOI":"10.5220\/0006639801080116"},{"key":"9942_CR129","doi-asserted-by":"crossref","unstructured":"Sharif M, Bhagavatula S, Bauer L, Reiter MK (2016) Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, CCS\u201916. ACM, New York, pp 1528\u20131540","DOI":"10.1145\/2976749.2978392"},{"key":"9942_CR130","doi-asserted-by":"crossref","unstructured":"Sheen S, Rajesh R (2008) Network intrusion detection using feature selection and decision tree classifier, pp 1\u20134","DOI":"10.1109\/TENCON.2008.4766847"},{"issue":"17","key":"9942_CR131","doi-asserted-by":"crossref","first-page":"4261","DOI":"10.1080\/00207540050205073","volume":"38","author":"C Shin","year":"2010","unstructured":"Shin C, Park S (2010) A machine learning approach to yield management in semiconductor manufacturing. Int J Prod Res 38(17):4261\u20134271","journal-title":"Int J Prod Res"},{"key":"9942_CR132","unstructured":"Siddiqi A (2019) Adversarial security attacks and perturbations on machine learning and deep learning methods. CoRR. arXiv:1907.07291"},{"issue":"1","key":"9942_CR133","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.eswa.2011.06.013","volume":"39","author":"SSS Sindhu","year":"2012","unstructured":"Sindhu SSS, Geetha S, Kannan A (2012) Decision tree based light weight intrusion detection using a wrapper approach. Expert Syst Appl 39(1):129\u2013141","journal-title":"Expert Syst Appl"},{"key":"9942_CR134","doi-asserted-by":"crossref","unstructured":"\u015aliwi\u0144ski M, Piesik E, Piesi J (2018) Integrated functional safety and cyber security analysis. IFAC-PapersOnLine 51(24):1263\u20131270. 10th IFAC symposium on fault detection, supervision and safety for technical processes SAFEPROCESS 2018","DOI":"10.1016\/j.ifacol.2018.09.572"},{"key":"9942_CR135","unstructured":"Smaha SE (1988) Haystack: an intrusion detection system"},{"key":"9942_CR136","doi-asserted-by":"crossref","unstructured":"Stefanova Z, Ramachandran K (2017) Network attribute selection, classification and accuracy (NASCA) procedure for intrusion detection systems. In: Proceedings of the 2007 IEEE international symposium on technologies for homeland security","DOI":"10.1109\/THS.2017.7943463"},{"key":"9942_CR137","doi-asserted-by":"publisher","unstructured":"Stevens T (2020) Knowledge in the grey zone: AI and cybersecurity. Digital War 1:164\u2013170. https:\/\/doi.org\/10.1057\/s42984-020-00007-w","DOI":"10.1057\/s42984-020-00007-w"},{"key":"9942_CR138","unstructured":"Stolfo SJ (1999) KDD cup 1999 data data set. Accessed 3 June 2019"},{"key":"9942_CR139","doi-asserted-by":"crossref","unstructured":"Stouffer K, Lightman S, Pillitteri V, Abrams M, Hahn A (2015) Guide to industrial control systems (ICS) security","DOI":"10.6028\/NIST.SP.800-82r2"},{"key":"9942_CR140","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.sysarc.2016.01.007","volume":"63","author":"B Sun","year":"2016","unstructured":"Sun B, Li X, Wan B, Wang C, Zhou X, Chen X (2016) Definitions of predictability for cyber physical systems. J Syst Archit 63:48\u201360","journal-title":"J Syst Archit"},{"key":"9942_CR141","unstructured":"Sung AH, Mukkamala S (2003) Identifying important features for intrusion detection using support vector machines and neural networks. In: Proceedings of the 2003 symposium on applications and the internet, SAINT\u201903. IEEE Computer Society, Washington, DC, p 209"},{"key":"9942_CR142","unstructured":"System architectures for industrie 4.0 applications\u2014derivation of a generic architecture proposal. Production Engineering, Research and Development, Issue 3-4 (2019)"},{"key":"9942_CR143","unstructured":"Szychter A, Ameur H, Kung A, Daussin H (2018) The impact of artificial intelligence on security: a dual perspective. C&ESAR"},{"key":"9942_CR144","doi-asserted-by":"crossref","first-page":"516","DOI":"10.1109\/TSMCC.2010.2048428","volume":"40","author":"M Tavallaee","year":"2010","unstructured":"Tavallaee M, Stakhanova N, Ghorbani A (2010) Toward credible evaluation of anomaly-based intrusion-detection methods. IEEE Trans Syst Man Cybern Part C Appl Rev 40:516\u2013524","journal-title":"IEEE Trans Syst Man Cybern Part C Appl Rev"},{"issue":"2355","key":"9942_CR145","first-page":"2019","volume":"19","author":"S Tedeschi","year":"2019","unstructured":"Tedeschi S, Emmanouilidis C, Mehnen J, Roy R (2019) A design approach to IoT endpoint security for production machinery monitoring. Sensors 19(2355):2019","journal-title":"Sensors"},{"key":"9942_CR146","doi-asserted-by":"crossref","first-page":"100631","DOI":"10.1016\/j.swevo.2019.100631","volume":"53","author":"A Thakkar","year":"2020","unstructured":"Thakkar A, Lohiya R (2020) Role of swarm and evolutionary algorithms for intrusion detection system: a survey. Swarm Evol Comput 53:100631","journal-title":"Swarm Evol Comput"},{"key":"9942_CR147","unstructured":"Thapar V (2019) GE brings AI into preventive maintenance to reduce jet engine failure by one-third"},{"key":"9942_CR148","unstructured":"Trieu K, Yang Y (2018) Artificial intelligence-based password brute force attacks"},{"issue":"3","key":"9942_CR149","doi-asserted-by":"crossref","first-page":"410","DOI":"10.3390\/sym12030410","volume":"12","author":"TC Truong","year":"2020","unstructured":"Truong TC, Diep QB, Zelinka I (2020) Artificial intelligence in the cyber domain: offense and defense. Symmetry 12(3):410","journal-title":"Symmetry"},{"key":"9942_CR150","unstructured":"Turchin A (2015) A map: AGI failures modes and levels"},{"key":"9942_CR151","doi-asserted-by":"crossref","unstructured":"Turchin A, Denkenberger D (2020) Classification of global catastrophic risks connected with artificial intelligence. AI Soc 35(1):147\u2013163","DOI":"10.1007\/s00146-018-0845-5"},{"key":"9942_CR152","series-title":"Adaptive, model-based monitoring for cyber attack detection","volume-title":"Recent advances in intrusion detection","author":"A Valdes","year":"2000","unstructured":"Valdes A, Skinner K (2000) Recent advances in intrusion detection. Adaptive, model-based monitoring for cyber attack detection. Springer, Berlin"},{"issue":"4","key":"9942_CR153","doi-asserted-by":"crossref","first-page":"615","DOI":"10.1016\/j.eng.2019.04.011","volume":"5","author":"L Wang","year":"2019","unstructured":"Wang L (2019) From intelligence science to intelligent manufacturing. Engineering 5(4):615\u2013618","journal-title":"Engineering"},{"key":"9942_CR154","doi-asserted-by":"crossref","unstructured":"Warrender C, Forrest S, Pearlmutter B (1999) Detecting intrusions using system calls: alternative data models. In: IEEE symposium on security and privacy. IEEE Computer Society, pp 133\u2013145","DOI":"10.1109\/SECPRI.1999.766910"},{"issue":"2\u20133","key":"9942_CR155","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/0166-3615(94)90017-5","volume":"24","author":"TJ Williams","year":"1994","unstructured":"Williams TJ (1994) The Purdue enterprise reference architecture. Comput Ind 24(2\u20133):141\u2013158","journal-title":"Comput Ind"},{"key":"9942_CR200","unstructured":"Xiao H (2017) Adversarial and secure machine learning"},{"issue":"C","key":"9942_CR156","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.neucom.2014.08.081","volume":"160","author":"H Xiao","year":"2015","unstructured":"Xiao H, Biggio B, Nelson B, Xiao H, Eckert C, Roli F (2015) Support vector machines under adversarial label contamination. Neurocomputing 160(C):53\u201362","journal-title":"Neurocomputing"},{"key":"9942_CR157","doi-asserted-by":"crossref","unstructured":"Xu X (2012) From cloud computing to cloud manufacturing. Robotics Comput Integr Manuf 28(1):75\u201386","DOI":"10.1016\/j.rcim.2011.07.002"},{"key":"9942_CR158","doi-asserted-by":"publisher","unstructured":"Xue D, Sun J, Norrie DH (2001) An intelligent optimal production scheduling approach using constraint-based search and agent-based collaboration. Comp Ind 46(2):209\u2013231. https:\/\/doi.org\/10.1016\/S0166-3615(01)00118-X","DOI":"10.1016\/S0166-3615(01)00118-X"},{"key":"9942_CR159","unstructured":"Yampolskiy RV (2016) Taxonomy of pathways to dangerous artificial intelligence. In: Proceedings of the workshops at the 30th AAAI conference on artificial intelligence"},{"key":"9942_CR26","unstructured":"Yampolskiy RV, Spellchecker MS (2016) Artificial intelligence safety and cybersecurity: a timeline of AI failures. https:\/\/arxiv.org\/abs\/1610.07997"},{"issue":"1","key":"9942_CR160","first-page":"2017","volume":"12","author":"J Yan","year":"2017","unstructured":"Yan J, He H, Zhong X, Tang Y (2017) Q-learning-based vulnerability analysis of smart grid against sequential topology attacks. IEEE Trans Inf Forensics and Secur 12(1):2017","journal-title":"IEEE Trans Inf Forensics and Secur"},{"key":"9942_CR161","doi-asserted-by":"crossref","unstructured":"Yao J, Zhao SL, Saxton L (2005) A study on fuzzy intrusion detection, vol 5812","DOI":"10.1117\/12.604465"},{"key":"9942_CR162","unstructured":"Yao M (2017) 4 unique challenges of industrial artificial intelligence"},{"key":"9942_CR163","doi-asserted-by":"publisher","unstructured":"Yao Y, Viswanath B, Cryan J, Zheng H, Zhao BY (2017) Automated crowdturfing attacks and defenses in online review systems. In: Proceedings of the 2017 ACM SIGSAC conference on computer and communications security. Association for Computing Machinery, New York, pp 1143\u20131158. https:\/\/doi.org\/10.1145\/3133956.3133990","DOI":"10.1145\/3133956.3133990"},{"key":"9942_CR164","doi-asserted-by":"crossref","unstructured":"Ye N, Zhang Y, Borror CM (2004) Robustness of the Markov-chain model for cyber-attack detection. In: IEEE transactions on reliability, vol 53, pp 116\u2013123","DOI":"10.1109\/TR.2004.823851"},{"key":"9942_CR165","unstructured":"Yegnanarayana B (2009) Artificial neural networks. PHI Learning"},{"key":"9942_CR166","unstructured":"Yeo LH, Che X, Lakkaraju S (2017) Understanding modern intrusion detection systems: a survey"},{"issue":"1","key":"9942_CR167","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/S0031-3203(02)00026-2","volume":"36","author":"D-Y Yeung","year":"2003","unstructured":"Yeung D-Y, Ding Y (2003) Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognit 36(1):229\u2013243","journal-title":"Pattern Recognit"},{"key":"9942_CR168","doi-asserted-by":"crossref","unstructured":"Yin M, Yao D, Luo J, Liu X, Ma J (2013) Network backbone anomaly detection using double random forests based on non-extensive entropy feature extraction. In: Ninth international conference on natural computation, ICNC 2013, Shenyang, China, July 23\u201325, 2013, pp 80\u201384","DOI":"10.1109\/ICNC.2013.6817948"},{"key":"9942_CR169","unstructured":"Zaataria ES, Mareia M, Lia W, Usmanb Z (2019) Cobot programming for collaborative industrial tasks: an overview. Robotics Auton Syst"},{"issue":"11","key":"9942_CR170","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1145\/2934664","volume":"59","author":"M Zaharia","year":"2016","unstructured":"Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I (2016) Apache spark: a unified engine for big data processing. Commun ACM 59(11):56\u201365","journal-title":"Commun ACM"},{"key":"9942_CR171","doi-asserted-by":"crossref","unstructured":"Zaman S, Karray F (2009) Features selection for intrusion detection systems based on support vector machines. In: Proceedings of the 6th IEEE conference on consumer communications and networking conference, CCNC\u201909. IEEE Press, Piscataway, pp 1066\u20131073","DOI":"10.1109\/CCNC.2009.4784780"},{"key":"9942_CR177","doi-asserted-by":"publisher","first-page":"381","DOI":"10.4310\/SII.2009.v2.n3.a11","volume":"2","author":"H Zhang","year":"2009","unstructured":"Zhang H, Wang M (2009) Search for the smallest random forest. Stat interface 2:381. https:\/\/doi.org\/10.4310\/SII.2009.v2.n3.a11.","journal-title":"Stat interface"},{"key":"9942_CR172","doi-asserted-by":"crossref","unstructured":"Zhang J, Zulkernine M (2005) Network intrusion detection using random forests","DOI":"10.1109\/ARES.2006.7"},{"key":"9942_CR173","doi-asserted-by":"crossref","unstructured":"Zhang R, Chen X, Lu J, Wen S, Nepal S, Xiang Y (2018) Using AI to hack IA: a new stealthy spyware against voice assistance functions in smart phones","DOI":"10.1109\/ACCESS.2019.2945791"},{"key":"9942_CR174","doi-asserted-by":"crossref","DOI":"10.1201\/b12207","volume-title":"Ensemble methods: foundations and algorithms","author":"Z-H Zhou","year":"2012","unstructured":"Zhou Z-H (2012) Ensemble methods: foundations and algorithms, 1st edn. Chapman and Hall\/CRC, London","edition":"1"},{"issue":"12","key":"9942_CR175","doi-asserted-by":"crossref","first-page":"3274","DOI":"10.1109\/TPDS.2013.2295814","volume":"25","author":"Y Zhu","year":"2014","unstructured":"Zhu Y, Yan J, Sun YL, He H (2014) Revealing cascading failure vulnerability in power grids using risk-graph. IEEE Trans Parallel Distrib Syst 25(12):3274\u20133284","journal-title":"IEEE Trans Parallel Distrib Syst"}],"container-title":["Artificial Intelligence Review"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10462-020-09942-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10462-020-09942-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10462-020-09942-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,14]],"date-time":"2022-12-14T18:07:35Z","timestamp":1671041255000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10462-020-09942-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,2,4]]},"references-count":178,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2021,6]]}},"alternative-id":["9942"],"URL":"https:\/\/doi.org\/10.1007\/s10462-020-09942-2","relation":{},"ISSN":["0269-2821","1573-7462"],"issn-type":[{"value":"0269-2821","type":"print"},{"value":"1573-7462","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,2,4]]},"assertion":[{"value":"4 February 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}