{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,27]],"date-time":"2024-08-27T08:27:52Z","timestamp":1724747272637},"reference-count":59,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2012,11,6]],"date-time":"2012-11-06T00:00:00Z","timestamp":1352160000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Artif Intell Rev"],"published-print":{"date-parts":[[2015,1]]},"DOI":"10.1007\/s10462-012-9366-7","type":"journal-article","created":{"date-parts":[[2012,11,5]],"date-time":"2012-11-05T06:21:17Z","timestamp":1352096477000},"page":"125-139","source":"Crossref","is-referenced-by-count":27,"title":["Comparison of machine learning techniques for target detection"],"prefix":"10.1007","volume":"43","author":[{"given":"Jelte Peter","family":"Vink","sequence":"first","affiliation":[]},{"given":"Gerard","family":"de Haan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2012,11,6]]},"reference":[{"key":"9366_CR1","doi-asserted-by":"crossref","unstructured":"Amasyali MF, Ersoy OK (2011) Comparison of single and ensemble classifiers in terms of accuracy and execution time. In: International symposium on innovation intelligent system applications. doi: 10.1109\/INISTA.2011.5946119","DOI":"10.1109\/INISTA.2011.5946119"},{"key":"9366_CR2","first-page":"81","volume":"1","author":"S Aruna","year":"2011","unstructured":"Aruna S, Rajagopalan SP, Nandakishore LV (2011) An empirical comparison of supervised learning algorithms in disease detection. Int J Inf Technol Converg Serv 1: 81\u201392","journal-title":"Int J Inf Technol Converg Serv"},{"key":"9366_CR3","doi-asserted-by":"crossref","unstructured":"Bartlett MS, Littlewort G, Lainscsek C, Fasel I, Movellan J (2004) Machine learning methods for fully automatic recognition of facial expressions and facial actions. In: Proceedings of the IEEE international conference systems, man and cybernetics, pp 592\u2013597","DOI":"10.1109\/ICSMC.2004.1398364"},{"key":"9366_CR4","doi-asserted-by":"crossref","unstructured":"Breiman L (1999) Prediction games and arcing algorithms. Neural Comput 11(7):1493\u20131517. doi: 10.1162\/089976699300016106","DOI":"10.1162\/089976699300016106"},{"issue":"1","key":"9366_CR5","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman L (2001) Random forests. Mach Learn 45(1): 5\u201332","journal-title":"Mach Learn"},{"key":"9366_CR6","volume-title":"Classification and regression trees. Statistics\/ probability series","author":"L Breiman","year":"1984","unstructured":"Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Statistics\/ probability series. Wadsworth Publishing Company, Belmont"},{"key":"9366_CR7","doi-asserted-by":"crossref","unstructured":"Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121\u2013167. doi: 10.1023\/A:1009715923555 . http:\/\/dl.acm.org\/citation.cfm?id=593419.593463","DOI":"10.1023\/A:1009715923555"},{"key":"9366_CR8","doi-asserted-by":"crossref","unstructured":"Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, pp 161\u2013168. doi: 10.1145\/1143844.1143865","DOI":"10.1145\/1143844.1143865"},{"key":"9366_CR9","doi-asserted-by":"crossref","unstructured":"Caruana R, Karampatziakis N, Yessenalina A (2008) An empirical evaluation of supervised learning in high dimensions. In: Proceedings of the 25th international conference on machine learning, pp 96\u2013103. doi: 10.1145\/1390156.1390169","DOI":"10.1145\/1390156.1390169"},{"key":"9366_CR10","doi-asserted-by":"crossref","unstructured":"Che D, Hockenbury C, Marmelstein R, Rasheed K (2010) Classification of genomic islands using decision trees and their ensemble algorithms. BMC Genomics 11(Suppl 2):S1. doi: 10.1186\/1471-2164-11-S2-S1","DOI":"10.1186\/1471-2164-11-S2-S1"},{"key":"9366_CR11","first-page":"273","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20: 273\u2013297","journal-title":"Mach Learn"},{"key":"9366_CR12","doi-asserted-by":"crossref","unstructured":"Dettling M, B\u00fchlmann P (2003) Boosting for tumor classification with gene expression data. Bioinforma 19(9):1061\u20131069. http:\/\/dblp.uni-trier.de\/db\/journals\/bioinformatics\/bioinformatics19.htmlDettlingB03","DOI":"10.1093\/bioinformatics\/btf867"},{"key":"9366_CR13","doi-asserted-by":"crossref","unstructured":"Doshi F, Brunskill E, Shkolnik A, Kollar T, Rohanimanesh K, Tedrake R, Roy N (2007) Collision detection in legged locomotion using supervised learning. In: Proceedings of the IEEE\/RSJ international conference on intelligent robots and systems","DOI":"10.1109\/IROS.2007.4399538"},{"key":"9366_CR14","doi-asserted-by":"crossref","unstructured":"Douglas PK, Harris S, Yuille A, Cohen MS (2011)Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief. NeuroImage 56(2):544\u2013553. doi: 10.1016\/j.neuroimage.2010.11.002","DOI":"10.1016\/j.neuroimage.2010.11.002"},{"key":"9366_CR15","doi-asserted-by":"crossref","unstructured":"Enzweiler M, Gavrila DM (2009) Monocular pedestrian detection: survey and experiments. IEEE Trans Pattern Analysis Mach Intell 31(12):2179\u20132195. doi: 10.1109\/TPAMI.2008.260","DOI":"10.1109\/TPAMI.2008.260"},{"key":"9366_CR16","first-page":"1005","volume":"2","author":"A Flexer","year":"1994","unstructured":"Flexer A (1994) Statistical evaluation of neural network experiments: minimum requirements and current practice. Aust Res Inst Artif Intell 2: 1005\u20131008","journal-title":"Aust Res Inst Artif Intell"},{"key":"9366_CR17","unstructured":"Frank A, Asuncion A (2010) UCI machine learning repository. http:\/\/archive.ics.uci.edu\/ml"},{"key":"9366_CR18","doi-asserted-by":"crossref","unstructured":"Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119\u2013139. doi: 10.1006\/jcss.1997.1504 . http:\/\/portal.acm.org\/citation.cfm?id=261540.261549","DOI":"10.1006\/jcss.1997.1504"},{"issue":"200","key":"9366_CR19","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1080\/01621459.1937.10503522","volume":"32","author":"M Friedman","year":"1937","unstructured":"Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200): 675\u2013701. doi: 10.2307\/2279372","journal-title":"J Am Stat Assoc"},{"key":"9366_CR20","first-page":"2000","volume":"28","author":"J Friedman","year":"1998","unstructured":"Friedman J, Hastie T, Tibshirani R (1998) Additive logistic regression: a statistical view of boosting. Ann Stat 28: 2000","journal-title":"Ann Stat"},{"key":"9366_CR21","unstructured":"Garc\u00eda S, Herrera F (2008) An extension on \u201cStatistical Comparisons of Classifiers over Multiple Data Sets\u201d for all pairwise comparisons. J Mach Learn Res 9:2677\u20132694. http:\/\/www.jmlr.org\/papers\/volume9\/garcia08a\/garcia08a.pdf"},{"issue":"3","key":"9366_CR22","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1109\/TNN.2003.811708","volume":"14","author":"ABA. Graf","year":"2003","unstructured":"Graf ABA., Smola AJ., Borer S (2003) Classification in a normalized feature space using support vector machines. IEEE Trans Neural Netw 14(3): 597\u2013605. doi: 10.1109\/TNN.2003.811708","journal-title":"IEEE Trans Neural Netw"},{"key":"9366_CR23","first-page":"545","volume":"17","author":"I. Guyon","year":"2004","unstructured":"Guyon I., Hur AB., Gunn S., Dror G (2004) Result analysis of the nips 2003 feature selection challenge. Adv Neural Inf Process Syst 17: 545\u2013552","journal-title":"Adv Neural Inf Process Syst"},{"issue":"1","key":"9366_CR24","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M. Hall","year":"2009","unstructured":"Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten IH (2009) The weka data mining software: an update. SIGKDD Explor Newsl 11(1): 10\u201318. doi: 10.1145\/1656274.1656278","journal-title":"SIGKDD Explor Newsl"},{"key":"9366_CR25","doi-asserted-by":"crossref","unstructured":"Ho YC, Pepyne DL (2002) Simple explanation of the no free lunch theorem of optimization. Cybern Syst Anal 38(2):4409\u20134414. http:\/\/www.springerlink.com\/index\/T1Q45BRR3TNU1K1R.pdf","DOI":"10.1023\/A:1016355715164"},{"key":"9366_CR26","unstructured":"Hume D, Hendel C (1955) An Inquiry concerning human understanding: with a supplement, an abstract of a treatise of human nature. Library of liberal arts, Bobbs-Merrill. http:\/\/books.google.nl\/books?id=-P4HAQAAIAAJ"},{"key":"9366_CR27","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1080\/03610928008827904","volume":"9","author":"RL Iman","year":"1980","unstructured":"Iman RL, Davenport JM (1980) Approximations of the critical region of the friedman statistic. Commun Stat 9: 571\u2013595","journal-title":"Commun Stat"},{"key":"9366_CR28","unstructured":"Joachims T (1999) Making large-scale support vector machine learning practical. MIT Press, Cambridge, pp 169\u2013184. http:\/\/dl.acm.org\/citation.cfm?id=299094.299104"},{"key":"9366_CR29","doi-asserted-by":"crossref","unstructured":"Khan R, Hanbury A, St\u00f6ttinger J (2010) Skin detection: a random forest approach. IEEE Int Conf Image Process 4613\u20134616","DOI":"10.1109\/ICIP.2010.5651638"},{"key":"9366_CR30","unstructured":"Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31(3):249\u2013268. http:\/\/www.informatica.si\/PDF\/31-3\/11_Kotsiantis"},{"key":"9366_CR31","first-page":"393","volume":"8","author":"Y. Krishnaraj","year":"2008","unstructured":"Krishnaraj Y., Reddy CK (2008) Boosting methods for protein fold recognition: an empirical comparison. IEEE Int Conf Bioinform Biomed 8: 393\u2013396. doi: 10.1109\/BIBM.2008.83","journal-title":"IEEE Int Conf Bioinform Biomed"},{"key":"9366_CR32","doi-asserted-by":"crossref","unstructured":"Lin H, Li L (2005) Infinite ensemble learning with support vector machines. In: Proceedings of the 16th European conference on machine learning, pp 242\u2013254","DOI":"10.1007\/11564096_26"},{"key":"9366_CR33","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1109\/TIT.1982.1056489","volume":"28","author":"SP Lloyd","year":"1982","unstructured":"Lloyd SP (1982) Least squares quantization in pcm. IEEE Trans Inf Theory 28: 129\u2013137","journal-title":"IEEE Trans Inf Theory"},{"key":"9366_CR34","doi-asserted-by":"crossref","unstructured":"Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Struct 405(2):442\u2013451. doi: 10.1016\/0005-2795(75)90109-9 . http:\/\/www.sciencedirect.com\/science\/article\/pii\/0005279575901099","DOI":"10.1016\/0005-2795(75)90109-9"},{"key":"9366_CR35","doi-asserted-by":"crossref","unstructured":"McDonald RA, Hand DJ, Eckley IA (2003) An empirical comparison of three boosting algorithms on real data sets with artificial class noise. In: Proceedings of the 4th international conference multiple classification system, pp 35\u201344. http:\/\/dl.acm.org\/citation.cfm?id=1764295.1764301","DOI":"10.1007\/3-540-44938-8_4"},{"key":"9366_CR36","unstructured":"Mease D, Wyner A (2008) Evidence contrary to the statistical view of boosting. J Mach Learn Res 9:131\u2013156. http:\/\/dl.acm.org\/citation.cfm?id=1390681.1390687"},{"key":"9366_CR37","unstructured":"Mitchell TM (1980) The need for biases in learning generalizations. Technical Report CBM-TR-117, Department of Computer Science, Rutgers University"},{"issue":"2","key":"9366_CR38","first-page":"54","volume":"10","author":"D Miyamoto","year":"2008","unstructured":"Miyamoto D, Hazeyama H, Kadobayashi Y (2008) An evaluation of machine learning-based methods for detection of phishing sites. Aus J Intell Inf Process Syst 10(2): 54\u201363","journal-title":"Aus J Intell Inf Process Syst"},{"key":"9366_CR39","unstructured":"Mooney RJ (1996) Comparative experiments on disambiguating word senses: an illustration of the role of bias in machine learning. In: Proceedings of the conference on Empire methods in national language processing, pp 82\u201391. http:\/\/www.cs.utexas.edu\/users\/ai-lab\/pub-view.php?PubID=51464"},{"key":"9366_CR40","doi-asserted-by":"crossref","unstructured":"Prechelt L (1996) A quantitative study of experimental evaluations of neural network learning algorithms: current research practice. Neural Netw 9(3):457\u2013462. doi: 10.1016\/0893-6080(95)00123-9 . http:\/\/www.sciencedirect.com\/science\/article\/pii\/0893608095001239","DOI":"10.1016\/0893-6080(95)00123-9"},{"key":"9366_CR41","doi-asserted-by":"crossref","unstructured":"Quddus A, Fieguth P, Basir O (2005) Adaboost and support vector machines for white matter lesion segmentation in mr images. In: 27th Annual international conference on engineering in medicine and biology society, pp 463\u2013466. doi: 10.1109\/IEMBS.2005.1616447","DOI":"10.1109\/IEMBS.2005.1616447"},{"key":"9366_CR42","volume-title":"C4.5: programs for machine learning","author":"JR Quinlan","year":"1993","unstructured":"Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Francisco"},{"key":"9366_CR43","first-page":"172","volume":"31","author":"G Ridgeway","year":"1999","unstructured":"Ridgeway G (1999) The state of boosting. Comput Sci Stat 31: 172\u2013181","journal-title":"Comput Sci Stat"},{"issue":"10","key":"9366_CR44","doi-asserted-by":"crossref","first-page":"1619","DOI":"10.1109\/TPAMI.2006.211","volume":"28","author":"JJ Rodr\u00edguez","year":"2006","unstructured":"Rodr\u00edguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Analysis Mach Intell 28(10): 1619\u20131630","journal-title":"IEEE Trans Pattern Analysis Mach Intell"},{"key":"9366_CR45","doi-asserted-by":"crossref","unstructured":"Rojas-Bello RN, Lago-Fern\u00e1ndez LF, Mart\u00ednez-Mu\u00f1oz G, S\u00e1nchez-Monta\u00f1 \u00e9s MA (2011) A comparison of techniques for robust gender recognition. IEEE Int Conf Image Process 569\u2013572","DOI":"10.1109\/ICIP.2011.6116610"},{"key":"9366_CR46","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1023\/A:1009752403260","volume":"1","author":"S Salzberg","year":"1997","unstructured":"Salzberg S (1997) On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min Knowl Discov 1: 317\u2013327","journal-title":"Data Min Knowl Discov"},{"key":"9366_CR47","first-page":"1","volume":"1","author":"SL Salzberg","year":"1999","unstructured":"Salzberg SL (1999) On comparing classifiers: a critique of current research and methods. Data Min Knowl Discov 1: 1\u201312","journal-title":"Data Min Knowl Discov"},{"key":"9366_CR48","doi-asserted-by":"crossref","unstructured":"Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human Pose Recognition in Parts from Single Depth Images. Comput Vis Pattern Recogn. doi: 10.1109\/CVPR.2011.5995316 . http:\/\/research.microsoft.com\/apps\/pubs\/default.aspx?id=145347","DOI":"10.1109\/CVPR.2011.5995316"},{"key":"9366_CR49","unstructured":"Statnikov A, Aliferis CF (2007) Are random forests better than support vector machines for microarray-based cancer classification? In: AMIA annual symposium proceedings, pp 686\u2013690. http:\/\/view.ncbi.nlm.nih.gov\/pubmed\/18693924"},{"key":"9366_CR50","doi-asserted-by":"crossref","unstructured":"Statnikov A, Tsamardinos I, Dosbayev Y, Aliferis CF (2005) GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int J Med Inform 74(7\u20138):491\u2013503. doi: 10.1016\/j.ijmedinf.2005.05.002","DOI":"10.1016\/j.ijmedinf.2005.05.002"},{"key":"9366_CR51","doi-asserted-by":"crossref","unstructured":"Statnikov A, Wang L, Aliferis C (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinforma 9(1):319. doi: 10.1186\/1471-2105-9-319","DOI":"10.1186\/1471-2105-9-319"},{"key":"9366_CR52","doi-asserted-by":"crossref","unstructured":"Tang Y, Krasser S, He Y, Yang W, Alperovitch D (2008) Support vector machines and random forests modeling for spam senders behavior analysis. GLOBECOM pp 2174\u20132178. http:\/\/dblp.uni-trier.de\/db\/conf\/globecom\/globecom2008.htmlTangKHYA08","DOI":"10.1109\/GLOCOM.2008.ECP.419"},{"issue":"2","key":"9366_CR53","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1109\/JSTSP.2010.2055832","volume":"5","author":"JP Vink","year":"2011","unstructured":"Vink JP, de Haan G (2011) No-reference metric design with machine learning for local video compression artifact level. IEEE J Sel Top Signal Process 5(2): 297\u2013308. doi: 10.1109\/JSTSP.2010.2055832","journal-title":"IEEE J Sel Top Signal Process"},{"issue":"2","key":"9366_CR54","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1023\/B:VISI.0000013087.49260.fb","volume":"57","author":"P Viola","year":"2004","unstructured":"Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2): 137\u2013154. doi: 10.1023\/B:VISI.0000013087.49260.fb","journal-title":"Int J Comput Vis"},{"key":"9366_CR55","doi-asserted-by":"crossref","unstructured":"Wang Y, Han P, Lu X, Wu R, Huang J (2006) The performance comparison of adaboost and svm applied to sar atr. CIE international conference on radar, pp 1\u20134. doi: 10.1109\/ICR.2006.343515","DOI":"10.1109\/ICR.2006.343515"},{"key":"9366_CR56","doi-asserted-by":"crossref","unstructured":"Webb GI (2000) Multiboosting: a technique for combining boosting and wagging. Mach Learn 40(2):159\u2013196","DOI":"10.1023\/A:1007659514849"},{"key":"9366_CR57","first-page":"47","volume":"6","author":"DH Wolpert","year":"1992","unstructured":"Wolpert DH (1992) On the connection between in-sample testing and generalization error. Complex Syst 6: 47\u201394","journal-title":"Complex Syst"},{"key":"9366_CR58","doi-asserted-by":"crossref","unstructured":"Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67\u201382. doi: 10.1109\/4235.585893","DOI":"10.1109\/4235.585893"},{"key":"9366_CR59","doi-asserted-by":"crossref","unstructured":"Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou ZH, Steinbach M, Hand DJ, Steinberg D (2007) Top 10 algorithms in data mining. Knowl Inf Syst 14:1\u201337. doi: 10.1007\/s10115-007-0114-2","DOI":"10.1007\/s10115-007-0114-2"}],"container-title":["Artificial Intelligence Review"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10462-012-9366-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10462-012-9366-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10462-012-9366-7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,7,5]],"date-time":"2019-07-05T07:13:36Z","timestamp":1562310816000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10462-012-9366-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,11,6]]},"references-count":59,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2015,1]]}},"alternative-id":["9366"],"URL":"https:\/\/doi.org\/10.1007\/s10462-012-9366-7","relation":{},"ISSN":["0269-2821","1573-7462"],"issn-type":[{"value":"0269-2821","type":"print"},{"value":"1573-7462","type":"electronic"}],"subject":[],"published":{"date-parts":[[2012,11,6]]}}}