{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T16:00:52Z","timestamp":1720281652570},"reference-count":33,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2006,11,1]],"date-time":"2006-11-01T00:00:00Z","timestamp":1162339200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Artif Intell Rev"],"published-print":{"date-parts":[[2006,11]]},"DOI":"10.1007\/s10462-007-9049-y","type":"journal-article","created":{"date-parts":[[2007,11,9]],"date-time":"2007-11-09T15:05:24Z","timestamp":1194620724000},"page":"191-209","source":"Crossref","is-referenced-by-count":74,"title":["Combining rough decisions for intelligent text mining using Dempster\u2019s rule"],"prefix":"10.1007","volume":"26","author":[{"given":"Yaxin","family":"Bi","sequence":"first","affiliation":[]},{"given":"Sally","family":"McClean","sequence":"additional","affiliation":[]},{"given":"Terry","family":"Anderson","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2007,11,10]]},"reference":[{"key":"9049_CR1","unstructured":"Aphinyanaphongs Y, Aliferis CF (2003) Text categorization models for retrieval of high quality articles in internal medicine. In: Proceedings of the American Medical Informatics Association (AMIA) annual symposium, Washington, DC, USA, pp 31\u201335"},{"issue":"3","key":"9049_CR2","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1145\/183422.183423","volume":"12","author":"C Apte","year":"1994","unstructured":"Apte C, Damerau F and Weiss S (1994). Automated Learning of Decision Text Categorization. ACM Trans Inf Syst 12(3): 233\u2013251","journal-title":"ACM Trans Inf Syst"},{"key":"9049_CR3","doi-asserted-by":"crossref","unstructured":"Baker D, McCallum A (1998) Distributional clustering of words for text classification. In: Proceedings of 21st ACM international conference on research and development in information retrieval, pp 96\u2013103","DOI":"10.1145\/290941.290970"},{"key":"9049_CR4","doi-asserted-by":"crossref","unstructured":"Bi Y (2004) Combining multiple classifiers for text categorization using Dempster\u2019s rule of combination. PhD dissertation, University of Ulster","DOI":"10.1007\/978-3-540-27774-3_13"},{"key":"9049_CR5","doi-asserted-by":"crossref","unstructured":"Bi Y, Anderson T, McClean S (2004a) Combining rules for text categorization using Dempster\u2019s rule of combination. In: Proceedings of 5th international conference on intelligent data engineering and automated learning. LNCS 3177, Spring-Verlag, pp 457\u2013463","DOI":"10.1007\/978-3-540-28651-6_67"},{"key":"9049_CR6","doi-asserted-by":"crossref","unstructured":"Bi Y, Bell D, Guan JW (2004b) Combining evidence from classifiers in text categoriza-tion. In: Proceedings of the 8th international conference on knowledge-based intelligent information & engineering systems. LNCS 3215, Spring, pp 521\u2013528","DOI":"10.1007\/978-3-540-30134-9_70"},{"issue":"9","key":"9049_CR7","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1080\/088395101753210773","volume":"15","author":"A Chouchoulas","year":"2001","unstructured":"Chouchoulas A and Shen Q (2001). Rough set-aided keyword reduction for text categorization. Appl Artif Intell 15(9): 843\u2013873","journal-title":"Appl Artif Intell"},{"key":"9049_CR8","unstructured":"Cohen WW, Singer Y (1999) Simple, fast, and effective rule learner. In: Proceedings of annual conference of American association for artificial intelligence, pp 335\u2013342"},{"issue":"2","key":"9049_CR9","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1109\/3468.833094","volume":"30","author":"T Denoeux","year":"2000","unstructured":"Denoeux T (2000). A neural network classifier based on Dempster\u2013Shafer theory. IEEE Trans Syst Man Cybern A 30(2): 131\u2013150","journal-title":"IEEE Trans Syst Man Cybern A"},{"key":"9049_CR10","unstructured":"Freund Y, Schapire R (1996) Experiments with a new boosting algorithm. In: Machine learning: proceedings of the thirteenth international conference, pp 148\u2013156"},{"issue":"1","key":"9049_CR11","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/jcss.1997.1504","volume":"55","author":"Y Freund","year":"1997","unstructured":"Freund Y and Schapire RE (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1): 119\u2013139","journal-title":"J Comput Syst Sci"},{"key":"9049_CR12","unstructured":"Friedman J, Hastie T, Tibshirani R (1998) Additive logistic regression: A statistical view of boosting (Technical Report). Stanford University Statistics Department. http:\/\/www.stat-stanford.edu\/~tibs"},{"key":"9049_CR13","doi-asserted-by":"crossref","unstructured":"Grzymala-Busse J (1992) LERS\u2014A System for learning from examples based on Rough Sets. In: Slowinski R (ed), Intelligent decision support. Kluwer Academic, pp 3\u201317","DOI":"10.1007\/978-94-015-7975-9_1"},{"key":"9049_CR14","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/S0004-3702(98)00090-3","volume":"105","author":"JW Guang","year":"1998","unstructured":"Guang JW and Bell D (1998). Rough computational methods for information systems. Artif Intell 105: 77\u2013103","journal-title":"Artif Intell"},{"issue":"3","key":"9049_CR15","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1109\/34.667881","volume":"20","author":"J Kittler","year":"1998","unstructured":"Kittler J, Hatef M, Duin RPW and Matas J (1998). On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3): 226\u2013239","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"9049_CR16","doi-asserted-by":"crossref","unstructured":"Kuncheva L (2001) Combining classifiers: soft computing solutions. In: Pal SK, Pal A (eds) Pattern recognition: from classical to modern approaches. World Scientific, pp 427\u2013451","DOI":"10.1142\/9789812386533_0015"},{"key":"9049_CR17","doi-asserted-by":"crossref","unstructured":"Lam L (2000) Classifier combinations: implementation and theoretical issues. In: Kittler J, Roli F (eds) Multiple classifier systems. LNCS 1857, Spring, pp 78\u201386","DOI":"10.1007\/3-540-45014-9_7"},{"issue":"11","key":"9049_CR18","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1145\/319382.319388","volume":"42","author":"T Mitchell","year":"1999","unstructured":"Mitchell T (1999). Machine learning and data mining. Commun ACM 42(11): 31\u201336","journal-title":"Commun ACM"},{"key":"9049_CR19","doi-asserted-by":"crossref","unstructured":"Nardiello P, Sebastiani F, Sperduti A (2003) Discretizing continuous attributes in AdaBoost for text categorization. In: Proceedings of 25th European conference on information retrieval. LNCS 2633, Springer-Verlag, Berlin, pp 320\u2013334","DOI":"10.1007\/3-540-36618-0_23"},{"key":"9049_CR20","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1613\/jair.614","volume":"11","author":"D Opitz","year":"1999","unstructured":"Opitz D and Maclin R (1999). Popular ensemble methods: an empirical study. J Artif Intell Res 11: 169\u2013198","journal-title":"J Artif Intell Res"},{"key":"9049_CR21","doi-asserted-by":"crossref","unstructured":"Pawlak Z (1991) Rough Set: theoretical aspects of reasoning about data. Kluwer Academic","DOI":"10.1007\/978-94-011-3534-4"},{"key":"9049_CR22","unstructured":"Quinlan JR (1996) Bagging, boosting, and C4.5. In: Proceedings of the thirteenth national conference on artificial intelligence, pp 725\u2013730"},{"issue":"2\/3","key":"9049_CR23","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1023\/A:1007649029923","volume":"39","author":"RE Schapire","year":"2000","unstructured":"Schapire RE and Singer Y (2000). BoosTexter: aboosting-based system for text categorization. Mach Learn 39(2\/3): 135\u2013168","journal-title":"Mach Learn"},{"key":"9049_CR24","doi-asserted-by":"crossref","DOI":"10.1515\/9780691214696","volume-title":"A mathematical theory of evidence","author":"G Shafer","year":"1976","unstructured":"Shafer G (1976). A mathematical theory of evidence. Princeton University Press, Princeton"},{"key":"9049_CR25","first-page":"193","volume-title":"Advances of the Dempster\u2013Shafer Theory of Evidence","author":"A Skowron","year":"1994","unstructured":"Skowron A and Grzymala-Busse J (1994). From rough set theory to evidence theory. In: Yager, R, Fedrizzi, M and Kacprzyk, J (eds) Advances of the Dempster\u2013Shafer Theory of Evidence, pp 193\u2013236. Wiley, New York"},{"issue":"1","key":"9049_CR26","first-page":"41","volume":"6","author":"K Tumer","year":"2002","unstructured":"Tumer K and Ghosh JR (2002). Combining of disparate classifiers through order statistics. Pattern Anal Appl 6(1): 41\u201346","journal-title":"Pattern Anal Appl"},{"issue":"3","key":"9049_CR27","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1109\/21.155943","volume":"22","author":"L Xu","year":"1992","unstructured":"Xu L, Krzyzak A and Suen CY (1992). Several methods for combining multiple classifiers and their applications in handwritten character recognition. IEEE Trans Syst Man Cybern 22(3): 418\u2013435","journal-title":"IEEE Trans Syst Man Cybern"},{"issue":"1\u20132","key":"9049_CR28","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/S0020-0255(97)00076-5","volume":"104","author":"YY Yao","year":"1998","unstructured":"Yao YY and Lingras PJ (1998). Interpretations of belief functions in the theory of rough sets. Inf Sci 104(1\u20132): 81\u2013106","journal-title":"Inf Sci"},{"issue":"1\/2","key":"9049_CR29","first-page":"67","volume":"1","author":"Y Yang","year":"1999","unstructured":"Yang Y (1999). An evaluation of statistical approaches to text categorization. J Inf Retr 1(1\/2): 67\u201388","journal-title":"J Inf Retr"},{"key":"9049_CR30","unstructured":"van Rijsbergen CJ (1979) Information retrieval, 2nd edn. Butterworths"},{"key":"9049_CR31","unstructured":"Weiss S, Kulikowski C (1991) Computer system that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems. Morgan Kaufmann"},{"key":"9049_CR32","unstructured":"Weiss SM, Indurkhya N (2000) Lightweight rule induction. In: Proceedings of the seventeenth international conference on machine learning, pp 1135\u20131142"},{"key":"9049_CR33","unstructured":"Whiteaker CJ, Kuncheva L (2003) Examining the relationship between majority vote accuracy and diversity in bagging and boosting. Technical report. University of Wales, Bangor"}],"container-title":["Artificial Intelligence Review"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10462-007-9049-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10462-007-9049-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10462-007-9049-y","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,14]],"date-time":"2023-05-14T17:30:55Z","timestamp":1684085455000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10462-007-9049-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2006,11]]},"references-count":33,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2006,11]]}},"alternative-id":["9049"],"URL":"https:\/\/doi.org\/10.1007\/s10462-007-9049-y","relation":{},"ISSN":["0269-2821","1573-7462"],"issn-type":[{"value":"0269-2821","type":"print"},{"value":"1573-7462","type":"electronic"}],"subject":[],"published":{"date-parts":[[2006,11]]}}}