{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:13:21Z","timestamp":1728177201944},"reference-count":61,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2022,8,13]],"date-time":"2022-08-13T00:00:00Z","timestamp":1660348800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,8,13]],"date-time":"2022-08-13T00:00:00Z","timestamp":1660348800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100002341","name":"Academy of Finland","doi-asserted-by":"publisher","award":["311877","322221"],"id":[{"id":"10.13039\/501100002341","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Vilho, Yrj\u00f6 and Kalle V\u00e4is\u00e4l\u00e4 Foundation"},{"DOI":"10.13039\/501100005222","name":"University of Jyv\u00e4skyl\u00e4","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100005222","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Auton Agent Multi-Agent Syst"],"published-print":{"date-parts":[[2022,10]]},"abstract":"Abstract<\/jats:title>In interactive multiobjective optimization methods, the preferences of a decision maker are incorporated in a solution process to find solutions of interest for problems with multiple conflicting objectives. Since multiple solutions exist for these problems with various trade-offs, preferences are crucial to identify the best solution(s). However, it is not necessarily clear to the decision maker how the preferences lead to particular solutions and, by introducing explanations to interactive multiobjective optimization methods, we promote a novel paradigm of explainable interactive multiobjective optimization<\/jats:italic>. As a proof of concept, we introduce a new method, R-XIMO<\/jats:italic>, which provides explanations to a decision maker for reference point based interactive methods. We utilize concepts of explainable artificial intelligence and SHAP (Shapley Additive exPlanations) values. R-XIMO allows the decision maker to learn about the trade-offs in the underlying problem and promotes confidence in the solutions found. In particular, R-XIMO supports the decision maker in expressing new preferences that help them improve a desired objective by suggesting another objective to be impaired. This kind of support has been lacking. We validate R-XIMO numerically, with an illustrative example, and with\u00a0a case study demonstrating how R-XIMO can support a real decision maker. Our results show that R-XIMO successfully generates sound explanations. Thus, incorporating explainability in interactive methods appears to be a very promising and exciting new research area.<\/jats:p>","DOI":"10.1007\/s10458-022-09577-3","type":"journal-article","created":{"date-parts":[[2022,8,13]],"date-time":"2022-08-13T20:16:56Z","timestamp":1660421816000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Towards explainable interactive multiobjective optimization: R-XIMO"],"prefix":"10.1007","volume":"36","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4673-7388","authenticated-orcid":false,"given":"Giovanni","family":"Misitano","sequence":"first","affiliation":[]},{"given":"Bekir","family":"Afsar","sequence":"additional","affiliation":[]},{"given":"Giomara","family":"L\u00e1rraga","sequence":"additional","affiliation":[]},{"given":"Kaisa","family":"Miettinen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,8,13]]},"reference":[{"key":"9577_CR1","volume-title":"Nonlinear multiobjective optimization","author":"K Miettinen","year":"1999","unstructured":"Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic Publishers."},{"issue":"1","key":"9577_CR2","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1007\/s00291-008-0154-3","volume":"33","author":"M Luque","year":"2008","unstructured":"Luque, M., Ruiz, F., & Miettinen, K. (2008). Global formulation for interactive multiobjective optimization. OR Spectrum, 33(1), 27\u201348. https:\/\/doi.org\/10.1007\/s00291-008-0154-3.","journal-title":"OR Spectrum"},{"issue":"1","key":"9577_CR3","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1007\/s10479-010-0831-x","volume":"197","author":"F Ruiz","year":"2011","unstructured":"Ruiz, F., Luque, M., & Miettinen, K. (2011). Improving the computational efficiency in a global formulation (GLIDE) for interactive multiobjective optimization. Annals of Operations Research, 197(1), 47\u201370. https:\/\/doi.org\/10.1007\/s10479-010-0831-x.","journal-title":"Annals of Operations Research"},{"key":"9577_CR4","doi-asserted-by":"publisher","unstructured":"Miettinen, K., Hakanen, J., & Podkopaev, D. (2016). Interactive nonlinear multiobjective optimization methods. In S. Greco, M. Ehrgott, & J. Figueira (Eds.) Multiple criteria decision analysis, 2nd edn (pp. 931\u2013980). New York: Springer. https:\/\/doi.org\/10.1007\/978-1-4939-3094-4_22.","DOI":"10.1007\/978-1-4939-3094-4_22"},{"key":"9577_CR5","doi-asserted-by":"publisher","unstructured":"Miettinen, K., Ruiz, F., & Wierzbicki, A. P. (2008) Introduction to multiobjective optimization: Interactive approaches. In J. Branke, K. Deb, K. Miettinen, & R. Slowinski (Eds.) Multiobjective Optimization: Interactive and evolutionary approaches (pp. 27\u201357). Berlin: Springer. https:\/\/doi.org\/10.1007\/978-3-540-88908-3_2.","DOI":"10.1007\/978-3-540-88908-3_2"},{"issue":"4","key":"9577_CR6","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1145\/3448301","volume":"54","author":"B Afsar","year":"2021","unstructured":"Afsar, B., Miettinen, K., & Ruiz, F. (2021). Assessing the performance of interactive multiobjective optimization methods. ACM Computing Surveys, 54(4), 85. https:\/\/doi.org\/10.1145\/3448301.","journal-title":"ACM Computing Surveys"},{"key":"9577_CR7","doi-asserted-by":"publisher","first-page":"41256","DOI":"10.1109\/access.2018.2856832","volume":"6","author":"B Xin","year":"2018","unstructured":"Xin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., & Liu, B. (2018). Interactive multiobjective optimization: A review of the state-of-the-art. IEEE Access, 6, 41256\u201341279. https:\/\/doi.org\/10.1109\/access.2018.2856832.","journal-title":"IEEE Access"},{"key":"9577_CR8","doi-asserted-by":"publisher","unstructured":"Belton, V., Branke, J., Eskelinen, P., Greco, S., Molina, J., Ruiz, F., & S\u0142owi\u0144ski, R. (2008). Interactive multiobjective optimization from a learning perspective. In J. Branke, K. Deb, K. Miettinen, & R. Slowinski (Eds.) Multiobjective optimization: Interactive and evolutionary approaches (pp. 405\u2013433). Berlin: Springer. https:\/\/doi.org\/10.1007\/978-3-540-88908-3_15.","DOI":"10.1007\/978-3-540-88908-3_15"},{"key":"9577_CR9","doi-asserted-by":"publisher","unstructured":"Wang, J., Liu, Y., Sun, J., Jiang, Y., & Sun, C. (2016). Diversified recommendation incorporating item content information based on MOEA\/D. In 2016 49th Hawaii international conference on system sciences (HICSS) (pp. 688\u2013696). https:\/\/doi.org\/10.1109\/HICSS.2016.91. IEEE.","DOI":"10.1109\/HICSS.2016.91"},{"issue":"9","key":"9577_CR10","doi-asserted-by":"publisher","first-page":"949","DOI":"10.1057\/palgrave.jors.2600786","volume":"50","author":"K Miettinen","year":"1999","unstructured":"Miettinen, K., & M\u00e4kel\u00e4, M. M. (1999). Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation. Journal of the Operational Research Society, 50(9), 949\u2013959. https:\/\/doi.org\/10.1057\/palgrave.jors.2600786.","journal-title":"Journal of the Operational Research Society"},{"issue":"2","key":"9577_CR11","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1007\/s00291-001-0092-9","volume":"24","author":"K Miettinen","year":"2002","unstructured":"Miettinen, K., & M\u00e4kel\u00e4, M. M. (2002). On scalarizing functions in multiobjective optimization. OR Spectrum, 24(2), 193\u2013213. https:\/\/doi.org\/10.1007\/s00291-001-0092-9.","journal-title":"OR Spectrum"},{"key":"9577_CR12","volume-title":"Multiple criteria optimization: Theory, computation, and application","author":"RE Steuer","year":"1986","unstructured":"Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and application. New York: Wiley."},{"key":"9577_CR13","doi-asserted-by":"publisher","unstructured":"Lim, B. Y., Yang, Q., Abdul, A. M., & Wang, D. (2019). Why these explanations? Selecting intelligibility types for explanation goals. In IUI Workshops\u201919. https:\/\/doi.org\/10.1145\/1234567890.","DOI":"10.1145\/1234567890"},{"key":"9577_CR14","doi-asserted-by":"publisher","DOI":"10.1126\/scirobotics.aay7120","author":"D Gunning","year":"2019","unstructured":"Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G.-Z. (2019). XAI-Explainable artificial intelligence. Science Robotics. https:\/\/doi.org\/10.1126\/scirobotics.aay7120.","journal-title":"Science Robotics"},{"key":"9577_CR15","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1016\/j.inffus.2019.12.012","volume":"58","author":"AB Arrieta","year":"2020","unstructured":"Arrieta, A. B., D\u00edaz-Rodr\u00edguez, N., Ser, J. D., Bennetot, A., Tabik, S., Barbado, A., et al. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82\u2013115. https:\/\/doi.org\/10.1016\/j.inffus.2019.12.012.","journal-title":"Information Fusion"},{"key":"9577_CR16","doi-asserted-by":"publisher","first-page":"281","DOI":"10.1016\/j.procs.2020.08.030","volume":"176","author":"B Afsar","year":"2020","unstructured":"Afsar, B., Podkopaev, D., & Miettinen, K. (2020). Data-driven interactive multiobjective optimization: Challenges and a generic multi-agent architecture. Procedia Computer Science, 176, 281\u2013290. https:\/\/doi.org\/10.1016\/j.procs.2020.08.030.","journal-title":"Procedia Computer Science"},{"key":"9577_CR17","volume-title":"Multiobjective optimization: Interactive and evolutionary approaches","year":"2008","unstructured":"Branke, J., Deb, K., Miettinen, K., & Slowinski, R. (Eds.). (2008). Multiobjective optimization: Interactive and evolutionary approaches. Berlin: Springer."},{"issue":"5","key":"9577_CR18","doi-asserted-by":"publisher","first-page":"391","DOI":"10.1016\/0270-0255(82)90038-0","volume":"3","author":"AP Wierzbicki","year":"1982","unstructured":"Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Mathematical Modelling, 3(5), 391\u2013405. https:\/\/doi.org\/10.1016\/0270-0255(82)90038-0.","journal-title":"Mathematical Modelling"},{"issue":"2","key":"9577_CR19","doi-asserted-by":"publisher","first-page":"202","DOI":"10.1057\/palgrave.jors.2600349","volume":"48","author":"JT Buchanan","year":"1997","unstructured":"Buchanan, J. T. (1997). A na\u00efve approach for solving MCDM problems: the GUESS method. Journal of the Operational Research Society, 48(2), 202\u2013206. https:\/\/doi.org\/10.1057\/palgrave.jors.2600349.","journal-title":"Journal of the Operational Research Society"},{"key":"9577_CR20","doi-asserted-by":"publisher","unstructured":"Nakayama, H. (1995). Aspiration level approach to interactive multi-objective programming and its applications. In P. M. Pardalos, Y. Siskos, & C. Zopounidis (Eds.) Advances in multicriteria analysis (pp. 147\u2013174). Boston, MA: Springer. https:\/\/doi.org\/10.1007\/978-1-4757-2383-0_10.","DOI":"10.1007\/978-1-4757-2383-0_10"},{"key":"9577_CR21","doi-asserted-by":"publisher","unstructured":"Wierzbicki, A .P. (1980). The use of reference objectives in multiobjective optimization. In G. Fandel, & T. Gal (Eds.) Multiple criteria decision making, theory and applications (pp. 468\u2013486). Berlin: Springer. https:\/\/doi.org\/10.1007\/978-3-642-48782-8_32.","DOI":"10.1007\/978-3-642-48782-8_32"},{"key":"9577_CR22","volume-title":"Pattern recognition and machine learning","author":"C Bishop","year":"2006","unstructured":"Bishop, C. (2006). Pattern recognition and machine learning. New York: Springer."},{"issue":"3","key":"9577_CR23","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1016\/j.dss.2010.08.006","volume":"50","author":"EWT Ngai","year":"2011","unstructured":"Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559\u2013569. https:\/\/doi.org\/10.1016\/j.dss.2010.08.006.","journal-title":"Decision Support Systems"},{"key":"9577_CR24","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","volume":"42","author":"G Litjens","year":"2017","unstructured":"Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60\u201388. https:\/\/doi.org\/10.1016\/j.media.2017.07.005.","journal-title":"Medical Image Analysis"},{"key":"9577_CR25","doi-asserted-by":"publisher","first-page":"146","DOI":"10.1016\/j.inffus.2017.10.006","volume":"42","author":"Q Zhang","year":"2018","unstructured":"Zhang, Q., Yang, L. T., Chen, Z., & Li, P. (2018). A survey on deep learning for big data. Information Fusion, 42, 146\u2013157. https:\/\/doi.org\/10.1016\/j.inffus.2017.10.006.","journal-title":"Information Fusion"},{"key":"9577_CR26","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.ymssp.2018.02.016","volume":"108","author":"R Liu","year":"2018","unstructured":"Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33\u201347. https:\/\/doi.org\/10.1016\/j.ymssp.2018.02.016.","journal-title":"Mechanical Systems and Signal Processing"},{"issue":"2","key":"9577_CR27","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1609\/aimag.v40i2.2850","volume":"40","author":"D Gunning","year":"2019","unstructured":"Gunning, D., & Aha, D. (2019). DARPA\u2019s explainable artificial intelligence (XAI) program. AI Magazine, 40(2), 44\u201358. https:\/\/doi.org\/10.1609\/aimag.v40i2.2850.","journal-title":"AI Magazine"},{"issue":"3","key":"9577_CR28","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1145\/3236386.3241340","volume":"16","author":"ZC Lipton","year":"2018","unstructured":"Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 31\u201357. https:\/\/doi.org\/10.1145\/3236386.3241340.","journal-title":"Queue"},{"issue":"6","key":"9577_CR29","doi-asserted-by":"publisher","first-page":"1236","DOI":"10.1093\/bib\/bbx044","volume":"19","author":"R Miotto","year":"2017","unstructured":"Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep learning for healthcare: Review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236\u20131246. https:\/\/doi.org\/10.1093\/bib\/bbx044.","journal-title":"Briefings in Bioinformatics"},{"issue":"1","key":"9577_CR30","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1177\/0306312717741687","volume":"48","author":"J Stilgoe","year":"2017","unstructured":"Stilgoe, J. (2017). Machine learning, social learning and the governance of self-driving cars. Social Studies of Science, 48(1), 25\u201356. https:\/\/doi.org\/10.1177\/0306312717741687.","journal-title":"Social Studies of Science"},{"key":"9577_CR31","doi-asserted-by":"publisher","DOI":"10.1007\/s00146-021-01277-y","author":"J Siegel","year":"2021","unstructured":"Siegel, J., & Pappas, G. (2021). Morals, ethics, and the technology capabilities and limitations of automated and self-driving vehicles. AI & Society. https:\/\/doi.org\/10.1007\/s00146-021-01277-y.","journal-title":"AI & Society"},{"key":"9577_CR32","unstructured":"Ackerman, E. (2016). People want driverless cars with utilitarian ethics, unless they\u2019re a passenger. IEEE Spectrum."},{"key":"9577_CR33","unstructured":"Molnar, C. (2019). Interpretable machine learning: A guide for making black box models explainable."},{"key":"9577_CR34","doi-asserted-by":"publisher","unstructured":"Ribeiro, M. T., Singh, S., & Guestrin, C. (2016) \u201dWhy should I trust you?\u201d. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135\u20131144). New York: ACM. https:\/\/doi.org\/10.1145\/2939672.2939778.","DOI":"10.1145\/2939672.2939778"},{"issue":"3","key":"9577_CR35","doi-asserted-by":"publisher","first-page":"1350","DOI":"10.1214\/15-aoas848","volume":"9","author":"B Letham","year":"2015","unstructured":"Letham, B., Rudin, C., McCormick, T. H., & Madigan, D. (2015). Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model. The Annals of Applied Statistics, 9(3), 1350\u20131371. https:\/\/doi.org\/10.1214\/15-aoas848.","journal-title":"The Annals of Applied Statistics"},{"key":"9577_CR36","first-page":"1803","volume":"11","author":"D Baehrens","year":"2010","unstructured":"Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., & M\u00fcller, K.-R. (2010). How to explain individual classification decisions. The Journal of Machine Learning Research, 11, 1803\u20131831.","journal-title":"The Journal of Machine Learning Research"},{"issue":"1","key":"9577_CR37","doi-asserted-by":"publisher","first-page":"18","DOI":"10.3390\/e23010018","volume":"23","author":"P Linardatos","year":"2020","unstructured":"Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable AI: A review of machine learning interpretability methods. Entropy, 23(1), 18. https:\/\/doi.org\/10.3390\/e23010018.","journal-title":"Entropy"},{"key":"9577_CR38","first-page":"4765","volume-title":"Advances in Neural Information Processing Systems 30","author":"SM Lundberg","year":"2017","unstructured":"Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 4765\u20134774). California: Curran Associates, Inc."},{"key":"9577_CR39","volume-title":"17. A value for N-person games","author":"LS Shapley","year":"2016","unstructured":"Shapley, L. S. (2016). 17. A value for N-person games. Princeton: Princeton University Press."},{"key":"9577_CR40","volume-title":"Theory of games and economic behavior","author":"O Morgenstern","year":"1953","unstructured":"Morgenstern, O., & Von Neumann, J. (1953). Theory of games and economic behavior. Princeton: Princeton University Press."},{"issue":"6","key":"9577_CR41","doi-asserted-by":"publisher","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","volume":"11","author":"Q Zhang","year":"2007","unstructured":"Zhang, Q., & Li, H. (2007). MOEA\/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712\u2013731. https:\/\/doi.org\/10.1109\/TEVC.2007.892759.","journal-title":"IEEE Transactions on Evolutionary Computation"},{"key":"9577_CR42","doi-asserted-by":"publisher","unstructured":"Sukkerd, R., Simmons, R., & Garlan, D. (2018). Toward explainable multi-objective probabilistic planning. In 2018 IEEE\/ACM 4th international workshop on software engineering for smart cyber-physical systems (SEsCPS) (pp. 19\u201325). https:\/\/doi.org\/10.1145\/3196478.3196488. IEEE.","DOI":"10.1145\/3196478.3196488"},{"key":"9577_CR43","unstructured":"Zhan, H., & Cao, Y. (2019). Relationship explainable multi-objective optimization via vector value function based reinforcement learning. arXiv preprint arXiv:1910.01919."},{"key":"9577_CR44","doi-asserted-by":"publisher","unstructured":"Misitano, G. (2020). Interactively learning the preferences of a decision maker in multi-objective optimization utilizing belief-rules. In 2020 IEEE symposium series on computational intelligence (SSCI) (pp. 133\u2013140). https:\/\/doi.org\/10.1109\/SSCI47803.2020.9308316. IEEE.","DOI":"10.1109\/SSCI47803.2020.9308316"},{"key":"9577_CR45","doi-asserted-by":"crossref","unstructured":"Corrente, S., Greco, S., Matarazzo, B., & Slowinski, R. (2021). Explainable interactive evolutionary multiobjective optimization. Available at SSRN 3792994.","DOI":"10.2139\/ssrn.3792994"},{"key":"9577_CR46","volume-title":"Decision theory and rationality","author":"B Jos\u00e8","year":"2009","unstructured":"Jos\u00e8, B. (2009). Decision theory and rationality. Oxford: Oxford University Press."},{"issue":"4","key":"9577_CR47","doi-asserted-by":"publisher","first-page":"883","DOI":"10.1109\/21.35354","volume":"19","author":"S Narula","year":"1989","unstructured":"Narula, S., & Weistroffer, H. (1989). A flexible method for nonlinear multicriteria decision-making problems. IEEE Transactions on Systems, Man and Cybernetics, 19(4), 883\u2013887. https:\/\/doi.org\/10.1109\/21.35354.","journal-title":"IEEE Transactions on Systems, Man and Cybernetics"},{"key":"9577_CR48","doi-asserted-by":"publisher","unstructured":"Miettinen, K., & M\u00e4kel\u00e4, M. M. (1997). Interactive method NIMBUS for nondifferentiable multiobjective optimization problems. In J. Cl\u00edmaco (Ed.) Multicriteria analysis (pp. 310\u2013319). Berlin: Springer. https:\/\/doi.org\/10.1007\/978-3-642-60667-0_30.","DOI":"10.1007\/978-3-642-60667-0_30"},{"issue":"4","key":"9577_CR49","doi-asserted-by":"publisher","first-page":"577","DOI":"10.1109\/TEVC.2013.2281535","volume":"18","author":"K Deb","year":"2014","unstructured":"Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577\u2013601. https:\/\/doi.org\/10.1109\/TEVC.2013.2281535.","journal-title":"IEEE Transactions on Evolutionary Computation"},{"issue":"5","key":"9577_CR50","doi-asserted-by":"publisher","first-page":"773","DOI":"10.1109\/TEVC.2016.2519378","volume":"20","author":"R Cheng","year":"2016","unstructured":"Cheng, R., Jin, Y., Olhofer, M., & Sendhoff, B. (2016). A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 20(5), 773\u2013791. https:\/\/doi.org\/10.1109\/TEVC.2016.2519378.","journal-title":"IEEE Transactions on Evolutionary Computation"},{"key":"9577_CR51","unstructured":"Misitano, G. (2020). INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker\u2019s preferences utilizing machine learning. Master\u2019s thesis, University of Jyv\u00e4skyl\u00e4, Finland. http:\/\/urn.fi\/URN:NBN:fi:jyu-202007065235."},{"issue":"6","key":"9577_CR52","doi-asserted-by":"publisher","first-page":"561","DOI":"10.1007\/s00158-007-0163-x","volume":"35","author":"X Liao","year":"2007","unstructured":"Liao, X., Li, Q., Yang, X., Zhang, W., & Li, W. (2007). Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Structural and Multidisciplinary Optimization, 35(6), 561\u2013569. https:\/\/doi.org\/10.1007\/s00158-007-0163-x.","journal-title":"Structural and Multidisciplinary Optimization"},{"key":"9577_CR53","doi-asserted-by":"publisher","first-page":"148277","DOI":"10.1109\/ACCESS.2021.3123825","volume":"9","author":"G Misitano","year":"2021","unstructured":"Misitano, G., Saini, B. S., Afsar, B., Shavazipour, B., & Miettinen, K. (2021). DESDEO: The modular and open source framework for interactive multiobjective optimization. IEEE Access, 9, 148277\u2013148295. https:\/\/doi.org\/10.1109\/ACCESS.2021.3123825.","journal-title":"IEEE Access"},{"issue":"3","key":"9577_CR54","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1609\/aimag.v38i3.2741","volume":"38","author":"B Goodman","year":"2017","unstructured":"Goodman, B., & Flaxman, S. (2017). European union regulations on algorithmic decision-making and a \u201cright to explanation\u2019\u2019. AI Magazine, 38(3), 50\u201357. https:\/\/doi.org\/10.1609\/aimag.v38i3.2741.","journal-title":"AI Magazine"},{"issue":"6","key":"9577_CR55","doi-asserted-by":"publisher","first-page":"935","DOI":"10.1287\/opre.50.6.935.357","volume":"50","author":"RL Keeney","year":"2002","unstructured":"Keeney, R. L. (2002). Common mistakes in making value trade-offs. Operations Research, 50(6), 935\u2013945. https:\/\/doi.org\/10.1287\/opre.50.6.935.357.","journal-title":"Operations Research"},{"issue":"4","key":"9577_CR56","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1007\/s40747-017-0053-9","volume":"3","author":"H Wang","year":"2017","unstructured":"Wang, H., Olhofer, M., & Jin, Y. (2017). A mini-review on preference modeling and articulation in multi-objective optimization: current status and challenges. Complex & Intelligent Systems, 3(4), 233\u2013245. https:\/\/doi.org\/10.1007\/s40747-017-0053-9.","journal-title":"Complex & Intelligent Systems"},{"key":"9577_CR57","doi-asserted-by":"publisher","unstructured":"Chander, A., & Srinivasan, R. (2018). Evaluating explanations by cognitive value. In Machine learning and knowledge extraction (pp. 314\u2013328). Cham: Springer. https:\/\/doi.org\/10.1007\/978-3-319-99740-7_23.","DOI":"10.1007\/978-3-319-99740-7_23"},{"issue":"2","key":"9577_CR58","doi-asserted-by":"publisher","first-page":"426","DOI":"10.1016\/j.ejor.2010.02.041","volume":"206","author":"K Miettinen","year":"2010","unstructured":"Miettinen, K., Eskelinen, P., Ruiz, F., & Luque, M. (2010). NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point. European Journal of Operational Research, 206(2), 426\u2013434. https:\/\/doi.org\/10.1016\/j.ejor.2010.02.041.","journal-title":"European Journal of Operational Research"},{"issue":"1","key":"9577_CR59","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1080\/10618600.2014.907095","volume":"24","author":"A Goldstein","year":"2015","unstructured":"Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics, 24(1), 44\u201365. https:\/\/doi.org\/10.1080\/10618600.2014.907095.","journal-title":"Journal of Computational and Graphical Statistics"},{"issue":"2","key":"9577_CR60","doi-asserted-by":"publisher","first-page":"266","DOI":"10.1109\/tsmca.2005.851270","volume":"36","author":"J-B Yang","year":"2006","unstructured":"Yang, J.-B., Liu, J., Wang, J., Sii, H.-S., & Wang, H.-W. (2006). Belief rule-base inference methodology using the evidential reasoning approach-RIMER. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 36(2), 266\u2013285. https:\/\/doi.org\/10.1109\/tsmca.2005.851270.","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans"},{"key":"9577_CR61","doi-asserted-by":"crossref","unstructured":"Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-precision model-agnostic explanations. In Proceedings of the AAAI conference on artificial intelligence, vol. 32.","DOI":"10.1609\/aaai.v32i1.11491"}],"container-title":["Autonomous Agents and Multi-Agent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10458-022-09577-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10458-022-09577-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10458-022-09577-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,29]],"date-time":"2022-10-29T12:52:38Z","timestamp":1667047958000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10458-022-09577-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8,13]]},"references-count":61,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2022,10]]}},"alternative-id":["9577"],"URL":"https:\/\/doi.org\/10.1007\/s10458-022-09577-3","relation":{},"ISSN":["1387-2532","1573-7454"],"issn-type":[{"value":"1387-2532","type":"print"},{"value":"1573-7454","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,8,13]]},"assertion":[{"value":"6 July 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 August 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"43"}}