{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,12]],"date-time":"2024-01-12T21:46:46Z","timestamp":1705096006588},"reference-count":50,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2022,7,30]],"date-time":"2022-07-30T00:00:00Z","timestamp":1659139200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,7,30]],"date-time":"2022-07-30T00:00:00Z","timestamp":1659139200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Auton Agent Multi-Agent Syst"],"published-print":{"date-parts":[[2022,10]]},"abstract":"Abstract<\/jats:title>The problem of truth discovery<\/jats:italic>, i.e., of trying to find the true facts concerning a number of objects based on reports from various information sources of unknown trustworthiness, has received increased attention recently. The problem is made interesting by the fact that the relative believability of facts depends on the trustworthiness of their sources, which in turn depends on the believability of the facts the sources report. Several algorithms for truth discovery have been proposed, but their evaluation has mainly been performed experimentally by computing accuracy against large datasets. Furthermore, it is often unclear how these algorithms behave on an intuitive level. In this paper we take steps towards a framework for truth discovery which allows comparison and evaluation of algorithms based instead on their theoretical properties. To do so we pose truth discovery as a social choice problem, and formulate various axioms<\/jats:italic> that any reasonable algorithm should satisfy. Along the way we provide an axiomatic characterisation of the baseline \u2018Voting\u2019 algorithm\u2014which leads to an impossibility result showing that a certain combination of the axioms cannot hold simultaneously\u2014and check which axioms a particular well-known algorithm satisfies. We find that, surprisingly, our more fundamental axioms do not hold, and propose modifications to the algorithms to partially fix these problems.<\/jats:p>","DOI":"10.1007\/s10458-022-09569-3","type":"journal-article","created":{"date-parts":[[2022,7,30]],"date-time":"2022-07-30T08:06:47Z","timestamp":1659168407000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Towards an axiomatic approach to truth discovery"],"prefix":"10.1007","volume":"36","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3403-8328","authenticated-orcid":false,"given":"Joseph","family":"Singleton","sequence":"first","affiliation":[]},{"given":"Richard","family":"Booth","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,30]]},"reference":[{"key":"9569_CR1","doi-asserted-by":"crossref","unstructured":"Altman, A., & Tennenholtz, M. (2005). Ranking systems: The pagerank axioms. In Proceedings of the 6th ACM Conference on Electronic Commerce (pp. 1\u20138). ACM.","DOI":"10.1145\/1064009.1064010"},{"issue":"1","key":"9569_CR2","doi-asserted-by":"publisher","first-page":"473","DOI":"10.1613\/jair.2306","volume":"31","author":"A Altman","year":"2008","unstructured":"Altman, A., & Tennenholtz, M. (2008). Axiomatic foundations for ranking systems. Journal of Artificial Intelligence Research, 31(1), 473\u2013495.","journal-title":"Journal of Artificial Intelligence Research"},{"key":"9569_CR3","doi-asserted-by":"publisher","unstructured":"Andersen, R., Borgs, C., Chayes, J., Feige, U., Flaxman, A., Kalai, A., Mirrokni, V., & Tennenholtz, M. (2008). Trust-based recommendation systems: An axiomatic approach. In Proceedings of the 17th International Conference on World Wide Web, WWW \u201908 (pp. 199\u2013208). ACM. https:\/\/doi.org\/10.1145\/1367497.1367525.","DOI":"10.1145\/1367497.1367525"},{"issue":"3","key":"9569_CR4","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1086\/290841","volume":"62","author":"KJ Arrow","year":"1952","unstructured":"Arrow, K. J. (1952). Social choice and individual values. Ethics, 62(3), 220\u2013222.","journal-title":"Ethics"},{"key":"9569_CR5","volume-title":"Linear Algebra Done Right","author":"S Axler","year":"2014","unstructured":"Axler, S. (2014). Linear Algebra Done Right. Springer International Publishing."},{"key":"9569_CR6","doi-asserted-by":"crossref","unstructured":"Balakrishnan, R., & Kambhampati, S. (2011). Sourcerank: Relevance and trust assessment for deep web sources based on inter-source agreement. In Proceedings of the 20th International Conference on World Wide Web (pp. 227\u2013236).","DOI":"10.1145\/1963405.1963440"},{"issue":"3","key":"9569_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-031-01855-8","volume":"7","author":"L Berti-Equille","year":"2015","unstructured":"Berti-Equille, L., & Borge-Holthoefer, J. (2015). Veracity of data: From truth discovery computation algorithms to models of misinformation dynamics. Synthesis Lectures on Data Management, 7(3), 1\u2013155.","journal-title":"Synthesis Lectures on Data Management"},{"key":"9569_CR8","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9781107446984","volume-title":"Handbook of Computational Social Choice","author":"F Brandt","year":"2016","unstructured":"Brandt, F., Conitzer, V., Endriss, U., Lang, J., & Procaccia, A. D. (2016). Introduction to computational social choice. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, & A. D. Procaccia (Eds.), Handbook of Computational Social Choice. Cambridge University Press."},{"key":"9569_CR9","doi-asserted-by":"crossref","unstructured":"Christoff, Z., & Grossi, D. (2017). Binary voting with delegable proxy: An analysis of liquid democracy. In Proc. TARK 2017.","DOI":"10.4204\/EPTCS.251.10"},{"key":"9569_CR10","unstructured":"Ding, H., Gao, J., & Xu, J. (2016). Finding global optimum for truth discovery: Entropy based geometric variance. In Proc. 32nd International Symposium on Computational Geometry (SoCG 2016)."},{"key":"9569_CR11","doi-asserted-by":"publisher","first-page":"544","DOI":"10.1016\/j.jet.2009.10.015","volume":"145","author":"E Dokow","year":"2010","unstructured":"Dokow, E., & Holzman, R. (2010). Aggregation of binary evaluations with abstentions. Journal of Economic Theory, 145, 544\u2013561.","journal-title":"Journal of Economic Theory"},{"issue":"1","key":"9569_CR12","doi-asserted-by":"publisher","first-page":"550","DOI":"10.14778\/1687627.1687690","volume":"2","author":"XL Dong","year":"2009","unstructured":"Dong, X. L., Berti-Equille, L., & Srivastava, D. (2009). Integrating conflicting data: The role of source dependence. Proceedings of the VLDB Endowment, 2(1), 550\u2013561.","journal-title":"Proceedings of the VLDB Endowment"},{"issue":"1","key":"9569_CR13","doi-asserted-by":"publisher","first-page":"562","DOI":"10.14778\/1687627.1687691","volume":"2","author":"XL Dong","year":"2009","unstructured":"Dong, X. L., Berti-Equille, L., & Srivastava, D. (2009). Truth Discovery and Copying Detection in a Dynamic World. Proceedings of the VLDB Endowment, 2(1), 562\u2013573. https:\/\/doi.org\/10.14778\/1687627.1687691.","journal-title":"Proceedings of the VLDB Endowment"},{"key":"9569_CR14","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2019.2896287","author":"Y Du","year":"2019","unstructured":"Du, Y., Sun, Y. E., Huang, H., Huang, L., Xu, H., Bao, Y., & Guo, H. (2019). Bayesian co-clustering truth discovery for mobile crowd sensing systems. IEEE Transactions on Industrial Informatics. https:\/\/doi.org\/10.1109\/TII.2019.2896287.","journal-title":"IEEE Transactions on Industrial Informatics"},{"key":"9569_CR15","volume-title":"Handbook of Computational Social Choice","author":"U Endriss","year":"2016","unstructured":"Endriss, U. (2016). Judgment aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, & A. D. Procaccia (Eds.), Handbook of Computational Social Choice. Cambridge University Press."},{"key":"9569_CR16","unstructured":"Everaere, P., Konieczny, S., Marquis, P. (2010). The epistemic view of belief merging: Can we track the truth?. In ECAI (pp. 621\u2013626)."},{"key":"9569_CR17","doi-asserted-by":"publisher","unstructured":"Galland, A., Abiteboul, S., Marian, A., & Senellart, P. (2010). Corroborating information from disagreeing views. In Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM \u201910 (pp. 131\u2013140). ACM. https:\/\/doi.org\/10.1145\/1718487.1718504.","DOI":"10.1145\/1718487.1718504"},{"key":"9569_CR18","doi-asserted-by":"publisher","unstructured":"Ghosh, A., Kale, S., & McAfee, P. (2011). Who moderates the moderators?. In Proceedings of the 12th ACM Conference on Electronic Commerce\u2014EC 11. ACM Press . https:\/\/doi.org\/10.1145\/1993574.1993599.","DOI":"10.1145\/1993574.1993599"},{"issue":"1","key":"9569_CR19","doi-asserted-by":"publisher","first-page":"54","DOI":"10.1145\/2031331.2031341","volume":"13","author":"M Gupta","year":"2011","unstructured":"Gupta, M., & Han, J. (2011). Heterogeneous network-based trust analysis: A survey. ACM SIGKDD Explorations Newsletter, 13(1), 54\u201371. https:\/\/doi.org\/10.1145\/2031331.2031341.","journal-title":"ACM SIGKDD Explorations Newsletter"},{"key":"9569_CR20","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1007\/s11229-011-0031-5","volume":"187","author":"S Hartmann","year":"2012","unstructured":"Hartmann, S., & Sprenger, J. (2012). Judgment aggregation and the problem of tracking the truth. Synthese, 187, 209\u2013221.","journal-title":"Synthese"},{"issue":"5","key":"9569_CR21","doi-asserted-by":"publisher","first-page":"604","DOI":"10.1145\/324133.324140","volume":"46","author":"JM Kleinberg","year":"1999","unstructured":"Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604\u2013632. https:\/\/doi.org\/10.1145\/324133.324140.","journal-title":"Journal of the ACM"},{"issue":"5","key":"9569_CR22","doi-asserted-by":"publisher","first-page":"773","DOI":"10.1093\/logcom\/12.5.773","volume":"12","author":"S Konieczny","year":"2002","unstructured":"Konieczny, S., & P\u00e9rez, R. P. (2002). Merging information under constraints: A logical framework. Journal of Logic and computation, 12(5), 773\u2013808.","journal-title":"Journal of Logic and computation"},{"key":"9569_CR23","unstructured":"Konieczny, S., & P\u00e9rez, R. P. (2008). Improvement operators. In G.\u00a0Brewka, J.\u00a0Lang (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia, 16\u201319 Sept, 2008 (pp. 177\u2013187). AAAI Press. http:\/\/www.aaai.org\/Library\/KR\/2008\/kr08-018.php."},{"key":"9569_CR24","doi-asserted-by":"crossref","unstructured":"Kotonya, N., & Toni, F. (2020). Explainable automated fact-checking for public health claims. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 7740\u20137754).","DOI":"10.18653\/v1\/2020.emnlp-main.623"},{"key":"9569_CR25","unstructured":"Kruger, J., Endriss, U., Fernandez, R., & Qing, C. (2014). Axiomatic analysis of aggregation methods for collective annotation. In Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS \u201914 (pp. 1185\u20131192). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC. http:\/\/dl.acm.org\/citation.cfm?id=2617388.2617437."},{"key":"9569_CR26","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-02839-7","volume-title":"Handbook on Approval Voting","author":"JF Laslier","year":"2010","unstructured":"Laslier, J. F., & Sanver, M. R. (2010). Handbook on Approval Voting. Springer Science & Business Media."},{"issue":"2","key":"9569_CR27","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2897350.2897352","volume":"17","author":"Y Li","year":"2016","unstructured":"Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., et al. (2016). A survey on truth discovery. ACM SIGKDD Explorations Newsletter, 17(2), 1\u201316. https:\/\/doi.org\/10.1145\/2897350.2897352.","journal-title":"ACM SIGKDD Explorations Newsletter"},{"issue":"8","key":"9569_CR28","doi-asserted-by":"publisher","first-page":"1986","DOI":"10.1109\/TKDE.2016.2559481","volume":"28","author":"Y Li","year":"2016","unstructured":"Li, Y., Li, Q., Gao, J., Su, L., Zhao, B., Fan, W., & Han, J. (2016). Conflicts to harmony: A framework for resolving conflicts in heterogeneous data by truth discovery. IEEE Transactions on Knowledge and Data Engineering, 28(8), 1986\u20131999. https:\/\/doi.org\/10.1109\/TKDE.2016.2559481","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"9569_CR29","doi-asserted-by":"publisher","unstructured":"Ma, F., Li, Y., Li, Q., Qiu, M., Gao, J., Zhi, S., Su, L., Zhao, B., Ji, H., & Han, J. (2015). FaitCrowd: Fine Grained Truth Discovery for Crowdsourced Data Aggregation. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD \u201915 (pp. 745\u2013754). ACM. https:\/\/doi.org\/10.1145\/2783258.2783314. Event-place: Sydney, NSW, Australia.","DOI":"10.1145\/2783258.2783314"},{"key":"9569_CR30","doi-asserted-by":"publisher","unstructured":"Ma, F., Meng, C., Xiao, H., Li, Q., Gao, J., Su, L., & Zhang, A. (2017). Unsupervised discovery of drug side-effects from heterogeneous data sources. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD \u201917 (pp. 967\u2013976). ACM. https:\/\/doi.org\/10.1145\/3097983.3098129.","DOI":"10.1145\/3097983.3098129"},{"key":"9569_CR31","doi-asserted-by":"crossref","unstructured":"Marshall, J., Argueta, A., & Wang, D. (2017). A neural network approach for truth discovery in social sensing. In 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS) (pp. 343\u2013347). IEEE.","DOI":"10.1109\/MASS.2017.26"},{"key":"9569_CR32","unstructured":"Meir, R., Amir, O., Cohensius, G., Ben-Porat, O., & Xia, L. (2019). Truth discovery via proxy voting. CoRR. arXiv:abs\/1905.00629."},{"key":"9569_CR33","unstructured":"Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab. http:\/\/ilpubs.stanford.edu:8090\/422\/."},{"key":"9569_CR34","unstructured":"Pasternack, J., & Roth, D. (2010). Knowing what to believe (when you already know something). In Proceedings of the 23rd International Conference on Computational Linguistics, COLING \u201910(pp. 877\u2013885). Association for Computational Linguistics, Stroudsburg, PA, USA. http:\/\/dl.acm.org\/citation.cfm?id=1873781.1873880."},{"key":"9569_CR35","unstructured":"Singleton, J., & Booth, R. (2020). An axiomatic approach to truth discovery. In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS \u201920 (pp. 2011\u20132013). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC."},{"key":"9569_CR36","unstructured":"Tennenholtz, M. (2004). Reputation systems: An axiomatic approach. In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI \u201904 (pp. 544\u2013551). AUAI Press, Arlington, Virginia, United States. http:\/\/dl.acm.org\/citation.cfm?id=1036843.1036909."},{"key":"9569_CR37","unstructured":"Waguih, D. A., & Berti-Equille, L. (2014). Truth discovery algorithms: An experimental evaluation. arXiv preprint. arXiv:1409.6428."},{"key":"9569_CR38","doi-asserted-by":"publisher","unstructured":"Wang, D., Kaplan, L., Le, H., & Abdelzaher, T. (2012). On truth discovery in social sensing: A maximum likelihood estimation approach. In Proceedings of the 11th International Conference on Information Processing in Sensor Networks, IPSN \u201912 (pp. 233\u2013244). ACM. https:\/\/doi.org\/10.1145\/2185677.2185737. Event-place: Beijing, China.","DOI":"10.1145\/2185677.2185737"},{"key":"9569_CR39","doi-asserted-by":"crossref","unstructured":"Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., Su, L., & Gao, J. (2018). Eann: Event adversarial neural networks for multi-modal fake news detection. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 849\u2013857).","DOI":"10.1145\/3219819.3219903"},{"key":"9569_CR40","doi-asserted-by":"publisher","unstructured":"W\u0105s, T., & Skibski, O. (2020). Axiomatic characterization of pagerank. https:\/\/doi.org\/10.48550\/ARXIV.2010.08487. arXiv:2010.08487.","DOI":"10.48550\/ARXIV.2010.08487"},{"key":"9569_CR41","unstructured":"Xiao, H. (2018). Multi-sourced information trustworthiness analysis: Applications and theory. Ph.D. thesis, University at Buffalo, State University of New York."},{"key":"9569_CR42","doi-asserted-by":"publisher","unstructured":"Xiao, H., Gao, J., Wang, Z., Wang, S., Su, L., & Liu, H. (2016). A truth discovery approach with theoretical guarantee. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD \u201916 (pp. 1925\u20131934). ACM. https:\/\/doi.org\/10.1145\/2939672.2939816.","DOI":"10.1145\/2939672.2939816"},{"key":"9569_CR43","doi-asserted-by":"publisher","unstructured":"Yang, Y., Bai, Q., & Liu, Q. (2018). On the discovery of continuous truth: A semi-supervised approach with partial ground truths. In Web Information Systems Engineering\u2014WISE 2018 (pp. 424\u2013438). Springer International Publishing. https:\/\/doi.org\/10.1007\/978-3-030-02922-7_29.","DOI":"10.1007\/978-3-030-02922-7_29"},{"key":"9569_CR44","doi-asserted-by":"publisher","first-page":"360","DOI":"10.1016\/j.knosys.2018.12.004","volume":"165","author":"Y Yang","year":"2019","unstructured":"Yang, Y., Bai, Q., & Liu, Q. (2019). A probabilistic model for truth discovery with object correlations. Knowledge-Based Systems, 165, 360\u2013373. https:\/\/doi.org\/10.1016\/j.knosys.2018.12.004.","journal-title":"Knowledge-Based Systems"},{"issue":"6","key":"9569_CR45","doi-asserted-by":"publisher","first-page":"796","DOI":"10.1109\/TKDE.2007.190745","volume":"20","author":"X Yin","year":"2008","unstructured":"Yin, X., Han, J., & Yu, P. S. (2008). Truth discovery with multiple conflicting information providers on the web. IEEE Transactions on Knowledge and Data Engineering, 20(6), 796\u2013808. https:\/\/doi.org\/10.1109\/TKDE.2007.190745","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"9569_CR46","doi-asserted-by":"publisher","unstructured":"Yin, X., & Tan, W. (2011). Semi-supervised truth discovery. In Proceedings of the 20th International Conference on World Wide Web, WWW \u201911 (pp. 217\u2013226). ACM. https:\/\/doi.org\/10.1145\/1963405.1963439. Event-place: Hyderabad, India.","DOI":"10.1145\/1963405.1963439"},{"key":"9569_CR47","doi-asserted-by":"publisher","unstructured":"Zhang, D. Y., Han, R., Wang, D., & Huang, C. (2016-12). On robust truth discovery in sparse social media sensing. In 2016 IEEE International Conference on Big Data (Big Data) (pp. 1076\u20131081). https:\/\/doi.org\/10.1109\/BigData.2016.7840710.","DOI":"10.1109\/BigData.2016.7840710"},{"key":"9569_CR48","doi-asserted-by":"publisher","first-page":"1741","DOI":"10.1109\/ACCESS.2017.2780182","volume":"6","author":"L Zhang","year":"2018","unstructured":"Zhang, L., Qi, G. J., Zhang, D., & Tang, J. (2018). Latent dirichlet truth discovery: Separating trustworthy and untrustworthy components in data sources. IEEE Access, 6, 1741\u20131752. https:\/\/doi.org\/10.1109\/ACCESS.2017.2780182","journal-title":"IEEE Access"},{"key":"9569_CR49","doi-asserted-by":"publisher","unstructured":"Zhi, S., Zhao, B., Tong, W., Gao, J., Yu, D., Ji, H., & Han, J. (2015). Modeling truth existence in truth discovery. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD \u201915 (pp. 1543\u20131552). ACM. https:\/\/doi.org\/10.1145\/2783258.2783339.","DOI":"10.1145\/2783258.2783339"},{"key":"9569_CR50","volume-title":"Handbook of Computational Social Choice","author":"WS Zwicker","year":"2016","unstructured":"Zwicker, W. S. (2016). Introduction to the theory of voting. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, & A. D. Procaccia (Eds.), Handbook of Computational Social Choice. Cambridge University Press."}],"container-title":["Autonomous Agents and Multi-Agent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10458-022-09569-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10458-022-09569-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10458-022-09569-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,29]],"date-time":"2022-10-29T12:53:20Z","timestamp":1667048000000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10458-022-09569-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,30]]},"references-count":50,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2022,10]]}},"alternative-id":["9569"],"URL":"https:\/\/doi.org\/10.1007\/s10458-022-09569-3","relation":{},"ISSN":["1387-2532","1573-7454"],"issn-type":[{"value":"1387-2532","type":"print"},{"value":"1573-7454","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,7,30]]},"assertion":[{"value":"20 June 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 July 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}],"article-number":"42"}}