{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:07:34Z","timestamp":1735585654166},"reference-count":101,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2022,6,24]],"date-time":"2022-06-24T00:00:00Z","timestamp":1656028800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,6,24]],"date-time":"2022-06-24T00:00:00Z","timestamp":1656028800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/100000006","name":"office of naval research","doi-asserted-by":"crossref","award":["N00014-18-S-B001"],"id":[{"id":"10.13039\/100000006","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/100004317","name":"lockheed martin corporation","doi-asserted-by":"publisher","award":["GR00000509"],"id":[{"id":"10.13039\/100004317","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007187","name":"lincoln laboratory, massachusetts institute of technology","doi-asserted-by":"publisher","award":["7000437192"],"id":[{"id":"10.13039\/100007187","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Auton Agent Multi-Agent Syst"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1007\/s10458-022-09566-6","type":"journal-article","created":{"date-parts":[[2022,6,24]],"date-time":"2022-06-24T07:04:01Z","timestamp":1656054241000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":26,"title":["Multi-UAV planning for cooperative wildfire coverage and tracking with quality-of-service guarantees"],"prefix":"10.1007","volume":"36","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0147-1037","authenticated-orcid":false,"given":"Esmaeil","family":"Seraj","sequence":"first","affiliation":[]},{"given":"Andrew","family":"Silva","sequence":"additional","affiliation":[]},{"given":"Matthew","family":"Gombolay","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,6,24]]},"reference":[{"key":"9566_CR1","doi-asserted-by":"crossref","unstructured":"Caillouet, C., Giroire, F., & Razafindralambo, T. (2018). Optimization of mobile sensor coverage with uavs. In IEEE INFOCOM 2018-IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 622\u2013627). IEEE.","DOI":"10.1109\/INFCOMW.2018.8406980"},{"issue":"1","key":"9566_CR2","doi-asserted-by":"publisher","first-page":"132","DOI":"10.1007\/s10458-019-09401-5","volume":"33","author":"Y Zhao","year":"2019","unstructured":"Zhao, Y., Wang, X., Wang, C., Cong, Y., & Shen, L. (2019). Systemic design of distributed multi-uav cooperative decision-making for multi-target tracking. Autonomous Agents and Multi-Agent Systems, 33(1), 132\u2013158.","journal-title":"Autonomous Agents and Multi-Agent Systems"},{"issue":"4","key":"9566_CR3","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1016\/j.adhoc.2004.04.003","volume":"2","author":"IF Akyildiz","year":"2004","unstructured":"Akyildiz, I. F., & Kasimoglu, I. H. (2004). Wireless sensor and actor networks: Research challenges. Ad Hoc Networks, 2(4), 351\u2013367.","journal-title":"Ad Hoc Networks"},{"key":"9566_CR4","doi-asserted-by":"crossref","unstructured":"Liu, M., Gong, H., Wen, Y., Chen, G., & Cao, J. (2011). The last minute: Efficient data evacuation strategy for sensor networks in post-disaster applications. In 2011 Proceedings IEEE INFOCOM (pp. 291\u2013295). IEEE.","DOI":"10.1109\/INFCOM.2011.5935131"},{"key":"9566_CR5","doi-asserted-by":"crossref","unstructured":"Afghah, F., Razi, A., Chakareski, J., & Ashdown, J. (2019). Wildfire monitoring in remote areas using autonomous unmanned aerial vehicles. In IEEE INFOCOM 2019-IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 835\u2013840). IEEE.","DOI":"10.1109\/INFCOMW.2019.8845309"},{"issue":"3","key":"9566_CR6","doi-asserted-by":"publisher","first-page":"332","DOI":"10.1007\/s10458-009-9079-8","volume":"19","author":"P Doherty","year":"2009","unstructured":"Doherty, P., Kvarnstr\u00f6m, J., & Heintz, F. (2009). A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems. Autonomous Agents and Multi-Agent Systems, 19(3), 332\u2013377.","journal-title":"Autonomous Agents and Multi-Agent Systems"},{"issue":"12","key":"9566_CR7","doi-asserted-by":"publisher","first-page":"1699","DOI":"10.1109\/TKDE.2008.114","volume":"20","author":"M Li","year":"2008","unstructured":"Li, M., Liu, Y., & Chen, L. (2008). Nonthreshold-based event detection for 3d environment monitoring in sensor networks. IEEE Transactions on Knowledge and Data Engineering, 20(12), 1699\u20131711.","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"issue":"9","key":"9566_CR8","doi-asserted-by":"publisher","first-page":"1029","DOI":"10.1016\/j.comcom.2011.08.008","volume":"35","author":"K Ota","year":"2012","unstructured":"Ota, K., Dong, M., Cheng, Z., Wang, J., Li, X., & Shen, X. S. (2012). Oracle: Mobility control in wireless sensor and actor networks. Computer Communications, 35(9), 1029\u20131037.","journal-title":"Computer Communications"},{"key":"9566_CR9","doi-asserted-by":"crossref","unstructured":"Seraj, E., & Gombolay, M. (2020). Coordinated control of uavs for human-centered active sensing of wildfires. In 2020 American control conference (ACC) (pp. 1845\u20131852). IEEE.","DOI":"10.23919\/ACC45564.2020.9147613"},{"key":"9566_CR10","doi-asserted-by":"crossref","unstructured":"Pham, H. X., La, H. M., Feil-Seifer, D., & Deans, M. (2017). A distributed control framework for a team of unmanned aerial vehicles for dynamic wildfire tracking. In 2017 IEEE\/RSJ international conference on intelligent robots and systems (IROS) (pp. 6648\u20136653). IEEE.","DOI":"10.1109\/IROS.2017.8206579"},{"key":"9566_CR11","doi-asserted-by":"crossref","unstructured":"Pham, H.\u00a0X., La, H.\u00a0M., Feil-Seifer, D., & Deans, M.\u00a0C. (2018). A distributed control framework of multiple unmanned aerial vehicles for dynamic wildfire tracking. In IEEE transactions on systems, man, and cybernetics: Systems.","DOI":"10.1109\/IROS.2017.8206579"},{"key":"9566_CR12","doi-asserted-by":"crossref","unstructured":"Bays, M.\u00a0J., Wettergren, T.\u00a0A. (2015). A solution to the service agent transport problem. In 2015 IEEE\/RSJ international conference on intelligent robots and systems (IROS) (pp. 6443\u20136450). IEEE.","DOI":"10.1109\/IROS.2015.7354298"},{"issue":"8","key":"9566_CR13","doi-asserted-by":"publisher","first-page":"1647","DOI":"10.1109\/LCOMM.2016.2578312","volume":"20","author":"M Mozaffari","year":"2016","unstructured":"Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Communications Letters, 20(8), 1647\u20131650.","journal-title":"IEEE Communications Letters"},{"key":"9566_CR14","unstructured":"Ahmadzadeh, A., Buchman, G., Cheng, P., Jadbabaie, A., Keller, J., Kumar, V., & Pappas, G. (2006). Cooperative control of uavs for search and coverage. In Proceedings of the AUVSI conference on unmanned systems (Vol.\u00a02)."},{"issue":"10","key":"9566_CR15","doi-asserted-by":"publisher","first-page":"2157","DOI":"10.3390\/s7102157","volume":"7","author":"F Xia","year":"2007","unstructured":"Xia, F., Tian, Y.-C., Li, Y., & Sung, Y. (2007). Wireless sensor\/actuator network design for mobile control applications. Sensors, 7(10), 2157\u20132173.","journal-title":"Sensors"},{"key":"9566_CR16","doi-asserted-by":"crossref","unstructured":"Seraj, E., Chen, L., & Gombolay, M.\u00a0C. (2021). A hierarchical coordination framework for joint perception-action tasks in composite robot teams. IEEE Transactions on Robotics.","DOI":"10.1109\/TRO.2021.3096069"},{"key":"9566_CR17","unstructured":"Konan, S., Seraj, E., & Gombolay, M. (2022). Iterated reasoning with mutual information in cooperative and byzantine decentralized teaming, arXiv preprintarXiv:2201.08484."},{"issue":"3","key":"9566_CR18","doi-asserted-by":"publisher","first-page":"297","DOI":"10.1007\/s10458-009-9081-1","volume":"19","author":"M Brenner","year":"2009","unstructured":"Brenner, M., & Nebel, B. (2009). Continual planning and acting in dynamic multiagent environments. Autonomous Agents and Multi-agent Systems, 19(3), 297\u2013331.","journal-title":"Autonomous Agents and Multi-agent Systems"},{"issue":"1","key":"9566_CR19","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1007\/s10458-009-9102-0","volume":"21","author":"C Undeger","year":"2010","unstructured":"Undeger, C., & Polat, F. (2010). Multi-agent real-time pursuit. Autonomous Agents and Multi-agent Systems, 21(1), 69\u2013107.","journal-title":"Autonomous Agents and Multi-agent Systems"},{"key":"9566_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10458-020-09461-y","volume":"34","author":"H Ravichandar","year":"2020","unstructured":"Ravichandar, H., Shaw, K., & Chernova, S. (2020). Strata: Unified framework for task assignments in large teams of heterogeneous agents. Autonomous Agents and Multi-Agent Systems, 34, 1\u201325.","journal-title":"Autonomous Agents and Multi-Agent Systems"},{"issue":"3","key":"9566_CR21","doi-asserted-by":"publisher","first-page":"456","DOI":"10.1007\/s10458-012-9206-9","volume":"26","author":"D Sarne","year":"2013","unstructured":"Sarne, D., & Grosz, B. J. (2013). Determining the value of information for collaborative multi-agent planning. Autonomous Agents and Multi-agent Systems, 26(3), 456\u2013496.","journal-title":"Autonomous Agents and Multi-agent Systems"},{"issue":"3","key":"9566_CR22","doi-asserted-by":"publisher","first-page":"387","DOI":"10.1007\/s10458-005-2631-2","volume":"11","author":"L Panait","year":"2005","unstructured":"Panait, L., & Luke, S. (2005). Cooperative multi-agent learning: The state of the art. Autonomous Agents and Multi-agent Systems, 11(3), 387\u2013434.","journal-title":"Autonomous Agents and Multi-agent Systems"},{"issue":"2","key":"9566_CR23","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1023\/A:1010059125034","volume":"2","author":"MN Prasad","year":"1999","unstructured":"Prasad, M. N., & Lesser, V. R. (1999). Learning situation-specific coordination in cooperative multi-agent systems. Autonomous Agents and Multi-agent Systems, 2(2), 173\u2013207.","journal-title":"Autonomous Agents and Multi-agent Systems"},{"key":"9566_CR24","unstructured":"de\u00a0Sousa, J.\u00a0V.\u00a0R., & Gamboa, P.\u00a0V. (2020). Aerial forest fire detection and monitoring using a small uav. KnE Engineering (pp. 242\u2013256)."},{"key":"9566_CR25","doi-asserted-by":"crossref","unstructured":"Xing, Z., Zhang, Y., Su, C.-Y., Qu, Y., & Yu, Z. (2019). Kalman filter-based wind estimation for forest fire monitoring with a quadrotor uav. In 2019 IEEE conference on control technology and applications (CCTA) (pp. 783\u2013788). IEEE.","DOI":"10.1109\/CCTA.2019.8920637"},{"key":"9566_CR26","doi-asserted-by":"crossref","unstructured":"Beard, R., Kingston, D., McLain, T.\u00a0W. & Nelson, D. (2006). Decentralized cooperative aerial surveillance using fixed-wing miniature uavs.","DOI":"10.2514\/6.2005-5831"},{"key":"9566_CR27","unstructured":"McIntire, M., Nunes, E., & Gini, M. (2016). Iterated multi-robot auctions for precedence-constrained task scheduling. In Proceedings of the 2016 international conference on autonomous agents & multiagent systems. International Foundation for Autonomous Agents and Multiagent Systems (pp. 1078\u20131086)."},{"key":"9566_CR28","doi-asserted-by":"crossref","unstructured":"Nunes, E. & Gini, M. (2015). Multi-robot auctions for allocation of tasks with temporal constraints. In Twenty-Ninth AAAI conference on artificial intelligence.","DOI":"10.1609\/aaai.v29i1.9440"},{"issue":"4","key":"9566_CR29","doi-asserted-by":"publisher","first-page":"912","DOI":"10.1109\/TRO.2009.2022423","volume":"25","author":"H-L Choi","year":"2009","unstructured":"Choi, H.-L., Brunet, L., & How, J. P. (2009). Consensus-based decentralized auctions for robust task allocation. IEEE Transactions on Robotics, 25(4), 912\u2013926.","journal-title":"IEEE Transactions on Robotics"},{"issue":"8","key":"9566_CR30","doi-asserted-by":"publisher","first-page":"1310","DOI":"10.3390\/s16081310","volume":"16","author":"RS Allison","year":"2016","unstructured":"Allison, R. S., Johnston, J. M., Craig, G., & Jennings, S. (2016). Airborne optical and thermal remote sensing for wildfire detection and monitoring. Sensors, 16(8), 1310.","journal-title":"Sensors"},{"issue":"4","key":"9566_CR31","doi-asserted-by":"publisher","first-page":"550","DOI":"10.1016\/j.imavis.2007.07.002","volume":"26","author":"JR Martinez-de Dios","year":"2008","unstructured":"Martinez-de Dios, J. R., Arrue, B. C., Ollero, A., Merino, L., & G\u00f3mez-Rodr\u00edguez, F. (2008). Computer vision techniques for forest fire perception. Image and Vision Computing, 26(4), 550\u2013562.","journal-title":"Image and Vision Computing"},{"key":"9566_CR32","unstructured":"Stipanicev, D., Stula, M., Krstinic, D., Seric, L., Jakovcevic, T., & Bugaric, M. (2010). Advanced automatic wildfire surveillance and monitoring network. In D. Viegas (ed.), 6th international conference on forest fire research, Coimbra, Portugal."},{"key":"9566_CR33","doi-asserted-by":"crossref","unstructured":"Sujit, P., Kingston, D., & Beard, R. (2007). Cooperative forest fire monitoring using multiple uavs. In 2007 46th IEEE conference on decision and control (pp. 4875\u20134880). IEEE.","DOI":"10.1109\/CDC.2007.4434345"},{"key":"9566_CR34","doi-asserted-by":"crossref","unstructured":"Fujiwara, K., & Kudoh, J.-I. (2002). Forest fire detection in 2001 using three-dimensional histogram. In Geoscience and remote sensing symposium, 2002. IGARSS\u201902. 2002 IEEE international (Vol. 4, pp. 2057\u20132059). IEEE.","DOI":"10.1109\/IGARSS.2002.1026443"},{"key":"9566_CR35","doi-asserted-by":"crossref","unstructured":"Kudoh, J.-I., & Hosoi, K. (2003). Two dimensional forest fire detection method by using noaa avhrr images. In Geoscience and remote sensing symposium 2003. IGARSS\u201903. Proceedings. 2003 IEEE International (Vol. 4, pp. 2494\u20132495). IEEE.","DOI":"10.1109\/IGARSS.2003.1294486"},{"issue":"6","key":"9566_CR36","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1080\/00207720500438480","volume":"37","author":"DW Casbeer","year":"2006","unstructured":"Casbeer, D. W., Kingston, D. B., Beard, R. W., & McLain, T. W. (2006). Cooperative forest fire surveillance using a team of small unmanned air vehicles. International Journal of Systems Science, 37(6), 351\u2013360.","journal-title":"International Journal of Systems Science"},{"key":"9566_CR37","doi-asserted-by":"crossref","unstructured":"Haksar, R.\u00a0N. & Schwager,M., (2018). Distributed deep reinforcement learning for fighting forest fires with a network of aerial robots. In 2018 IEEE\/RSJ international conference on intelligent robots and systems (IROS) (pp. 1067\u20131074). IEEE.","DOI":"10.1109\/IROS.2018.8593539"},{"key":"9566_CR38","doi-asserted-by":"crossref","unstructured":"Finney, M.\u00a0A. (1998). Farsite: Fire area simulator-model development and evaluation. In Res. Pap. RMRS-RP-4, Revised 2004. Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station (Vol.\u00a04).","DOI":"10.2737\/RMRS-RP-4"},{"key":"9566_CR39","unstructured":"Freed, M., Fitzgerald, W., & Harris, R. (2005). Intelligent autonomous surveillance of many targets with few uavs. In Proceedings of the research and development partnering conference. Department of Homeland Security, Boston, MA."},{"key":"9566_CR40","doi-asserted-by":"crossref","unstructured":"Waharte, S., & Trigoni, N. (2010). Supporting search and rescue operations with uavs. In 2010 international conference on emerging security technologies (pp. 142\u2013147). IEEE.","DOI":"10.1109\/EST.2010.31"},{"key":"9566_CR41","doi-asserted-by":"crossref","unstructured":"Rudol, P., & Doherty, P. (2008). Human body detection and geolocalization for uav search and rescue missions using color and thermal imagery. In 2008 IEEE aerospace conference. IEEE (pp. 1\u20138).","DOI":"10.1109\/AERO.2008.4526559"},{"issue":"3","key":"9566_CR42","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1109\/MRA.2012.2206473","volume":"19","author":"T Tomic","year":"2012","unstructured":"Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., et al. (2012). Toward a fully autonomous uav: Research platform for indoor and outdoor urban search and rescue. IEEE Robotics and Automation Magazine, 19(3), 46\u201356.","journal-title":"IEEE Robotics and Automation Magazine"},{"issue":"12","key":"9566_CR43","doi-asserted-by":"publisher","first-page":"31362","DOI":"10.3390\/s151229861","volume":"15","author":"MA Olivares-Mendez","year":"2015","unstructured":"Olivares-Mendez, M. A., Fu, C., Ludivig, P., Bissyand\u00e9, T. F., Kannan, S., Zurad, M., et al. (2015). Towards an autonomous vision-based unmanned aerial system against wildlife poachers. Sensors, 15(12), 31362\u201331391.","journal-title":"Sensors"},{"issue":"1","key":"9566_CR44","doi-asserted-by":"publisher","first-page":"97","DOI":"10.3390\/s16010097","volume":"16","author":"LF Gonzalez","year":"2016","unstructured":"Gonzalez, L. F., Montes, G. A., Puig, E., Johnson, S., Mengersen, K., & Gaston, K. J. (2016). Unmanned aerial vehicles (uavs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors, 16(1), 97.","journal-title":"Sensors"},{"key":"9566_CR45","doi-asserted-by":"crossref","unstructured":"Bondi, E., Kapoor, A., Dey, D., Piavis, J., Shah, S., Hannaford, R., Iyer, A., Joppa, L., & Tambe, M. (2018). Near real-time detection of poachers from drones in airsim. In IJCAI, (pp. 5814\u20135816).","DOI":"10.24963\/ijcai.2018\/847"},{"issue":"5","key":"9566_CR46","doi-asserted-by":"publisher","first-page":"1260","DOI":"10.2112\/JCOASTRES-D-15-00005.1","volume":"31","author":"VV Klemas","year":"2015","unstructured":"Klemas, V. V. (2015). Coastal and environmental remote sensing from unmanned aerial vehicles: An overview. Journal of Coastal Research, 31(5), 1260\u20131267.","journal-title":"Journal of Coastal Research"},{"key":"9566_CR47","doi-asserted-by":"crossref","unstructured":"Marques, M. M., Lobo, V., Batista, R., Almeida, J., de F\u00e1tima Nunes, M., Ribeiro, R., & Bernardino, A. (2016). Oil spills detection: Challenges addressed in the scope of the seagull project. In OCEANS 2016 MTS\/IEEE Monterey (pp. 1\u20136). IEEE.","DOI":"10.1109\/OCEANS.2016.7761019"},{"key":"9566_CR48","doi-asserted-by":"crossref","unstructured":"Allen J. & Walsh, B. (2008). Enhanced oil spill surveillance, detection and monitoring through the applied technology of unmanned air systems. In International oil spill conference (Vol. 2008, no. 1, pp. 113\u2013120). American Petroleum Institute.","DOI":"10.7901\/2169-3358-2008-1-113"},{"key":"9566_CR49","unstructured":"Haddal, C.\u00a0C., & Gertler, J. (2010). Homeland security: Unmanned aerial vehicles and border surveillance. Library of Congress, Washington, DC. Congressional Research Service."},{"key":"9566_CR50","unstructured":"Vascik, P.\u00a0D., Balakrishnan, H., & Hansman, R.\u00a0J. (2018). Assessment of air traffic control for urban air mobility and unmanned systems."},{"key":"9566_CR51","doi-asserted-by":"crossref","unstructured":"Thipphavong, D. P., Apaza, R., Barmore, B., Battiste, V., Burian, B., Dao, Q., Feary, M., Go, S., Goodrich, K. H., Homola, J., & Idris, H. R. (2018). Urban air mobility airspace integration concepts and considerations. In 2018 aviation technology, integration, and operations conference (p. 3676).","DOI":"10.2514\/6.2018-3676"},{"key":"9566_CR52","doi-asserted-by":"crossref","unstructured":"Vascik, P. D., & Hansman, R. J. (2018). Scaling constraints for urban air mobility operations: Air traffic control, ground infrastructure, and noise. In 2018 aviation technology, integration, and operations conference (p. 3849).","DOI":"10.2514\/6.2018-3849"},{"key":"9566_CR53","doi-asserted-by":"crossref","unstructured":"De\u00a0Vivo, F., Battipede, M., Gili, P., Yezzi, A.\u00a0J., Feron, E., & Johnson, E. (2018). Real-time fire segmentation via active contours for uav integrated wildfire propagation prediction. In 2018 AIAA information systems-AIAA Infotech@ Aerospace (p. 1488).","DOI":"10.2514\/6.2018-1488"},{"key":"9566_CR54","unstructured":"Chamoso, P., Gonz\u00e1lez-Briones, A., De\u00a0La\u00a0Prieta, F., & Corchado, J.\u00a0M. (2018). Computer vision system for fire detection and report using uavs. In RSFF (pp. 40\u201349)."},{"issue":"1\u20134","key":"9566_CR55","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1007\/s10846-011-9560-x","volume":"65","author":"L Merino","year":"2012","unstructured":"Merino, L., Caballero, F., Mart\u00ednez-De-Dios, J. R., Maza, I., & Ollero, A. (2012). An unmanned aircraft system for automatic forest fire monitoring and measurement. Journal of Intelligent and Robotic Systems, 65(1\u20134), 533\u2013548.","journal-title":"Journal of Intelligent and Robotic Systems"},{"key":"9566_CR56","doi-asserted-by":"crossref","unstructured":"Merino, L., Caballero, F., de\u00a0Dios, J.\u00a0R.\u00a0M., Maza, I., Ollero, A. (2010). Automatic forest fire monitoring and measurement using unmanned aerial vehicles. In D. X. Viegas (Ed.), Proceedings of the 6th international congress on forest fire research, Coimbra, Portugal. Citeseer.","DOI":"10.1007\/978-94-007-3033-5_37"},{"issue":"7","key":"9566_CR57","doi-asserted-by":"publisher","first-page":"783","DOI":"10.1139\/cjfr-2014-0347","volume":"45","author":"C Yuan","year":"2015","unstructured":"Yuan, C., Zhang, Y., & Liu, Z. (2015). A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Canadian Journal of Forest Research, 45(7), 783\u2013792.","journal-title":"Canadian Journal of Forest Research"},{"issue":"4","key":"9566_CR58","doi-asserted-by":"publisher","first-page":"729","DOI":"10.1007\/s10514-015-9491-7","volume":"40","author":"C Robin","year":"2016","unstructured":"Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: Taxonomy and survey. Autonomous Robots, 40(4), 729\u2013760.","journal-title":"Autonomous Robots"},{"key":"9566_CR59","doi-asserted-by":"crossref","unstructured":"Jung, B., & Sukhatme, G.\u00a0S. (2006). Cooperative multi-robot target tracking. In Distributed autonomous robotic systems (Vol. 7, pp. 81\u201390). Springer.","DOI":"10.1007\/4-431-35881-1_9"},{"key":"9566_CR60","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.automatica.2018.11.001","volume":"100","author":"L Jin","year":"2019","unstructured":"Jin, L., Li, S., La, H. M., Zhang, X., & Hu, B. (2019). Dynamic task allocation in multi-robot coordination for moving target tracking: A distributed approach. Automatica, 100, 75\u201381.","journal-title":"Automatica"},{"issue":"1","key":"9566_CR61","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1007\/s10514-007-9028-9","volume":"23","author":"R Mottaghi","year":"2007","unstructured":"Mottaghi, R., & Vaughan, R. (2007). An integrated particle filter and potential field method applied to cooperative multi-robot target tracking. Autonomous Robots, 23(1), 19\u201335.","journal-title":"Autonomous Robots"},{"issue":"13","key":"9566_CR62","doi-asserted-by":"publisher","first-page":"1660","DOI":"10.1177\/0278364915602321","volume":"34","author":"K Hausman","year":"2015","unstructured":"Hausman, K., M\u00fcller, J., Hariharan, A., Ayanian, N., & Sukhatme, G. S. (2015). Cooperative multi-robot control for target tracking with onboard sensing. The International Journal of Robotics Research, 34(13), 1660\u20131677.","journal-title":"The International Journal of Robotics Research"},{"key":"9566_CR63","doi-asserted-by":"crossref","unstructured":"Bailon-Ruiz, R., & Lacroix, S. (2020). Wildfire remote sensing with uavs: A review from the autonomy point of view. In 2020 international conference on unmanned aircraft systems (ICUAS) (pp. 412\u2013420). IEEE.","DOI":"10.1109\/ICUAS48674.2020.9213986"},{"issue":"1","key":"9566_CR64","doi-asserted-by":"publisher","first-page":"1","DOI":"10.2514\/1.48403","volume":"8","author":"M Kumar","year":"2011","unstructured":"Kumar, M., Cohen, K., & Homchaudhuri, B. (2011). Cooperative control of multiple uninhabited aerial vehicles for monitoring and fighting wildfires. Journal of Aerospace Computing, Information, and Communication, 8(1), 1\u201316.","journal-title":"Journal of Aerospace Computing, Information, and Communication"},{"key":"9566_CR65","doi-asserted-by":"crossref","unstructured":"Ghamry, K.\u00a0A., & Zhang, Y. (2016). Cooperative control of multiple uavs for forest fire monitoring and detection. In 2016 12th IEEE\/ASME international conference on mechatronic and embedded systems and applications (MESA) (pp. 1\u20136). IEEE.","DOI":"10.1109\/MESA.2016.7587184"},{"key":"9566_CR66","doi-asserted-by":"crossref","unstructured":"Harikumar, K., Senthilnath, J., Sundaram, S. (2018). Multi-uav oxyrrhis marina-inspired search and dynamic formation control for forest firefighting. In IEEE Transactions on Automation Science and Engineering.","DOI":"10.1109\/TASE.2018.2867614"},{"issue":"2","key":"9566_CR67","doi-asserted-by":"publisher","first-page":"489","DOI":"10.1109\/TRO.2015.2397771","volume":"31","author":"SG Lee","year":"2015","unstructured":"Lee, S. G., Diaz-Mercado, Y., & Egerstedt, M. (2015). Multirobot control using time-varying density functions. IEEE Transactions on Robotics, 31(2), 489\u2013493.","journal-title":"IEEE Transactions on Robotics"},{"issue":"6","key":"9566_CR68","doi-asserted-by":"publisher","first-page":"1659","DOI":"10.1109\/TAC.2014.2359712","volume":"60","author":"X Lin","year":"2014","unstructured":"Lin, X., & Cassandras, C. G. (2014). An optimal control approach to the multi-agent persistent monitoring problem in two-dimensional spaces. IEEE Transactions on Automatic Control, 60(6), 1659\u20131664.","journal-title":"IEEE Transactions on Automatic Control"},{"key":"9566_CR69","doi-asserted-by":"crossref","unstructured":"Li, W., & Cassandras, C.\u00a0G. (2005). Distributed cooperative coverage control of sensor networks. In Proceedings of the 44th IEEE conference on decision and control (pp. 2542\u20132547). IEEE.","DOI":"10.1109\/CDC.2005.1582545"},{"key":"9566_CR70","doi-asserted-by":"crossref","unstructured":"Zuo, L., Yan, M., Guo, Y., & Ma, W. (2019). An improved kf-rbf based estimation algorithm for coverage control with unknown density function. In Complexity,\u00a02019.","DOI":"10.1155\/2019\/6268127"},{"key":"9566_CR71","doi-asserted-by":"crossref","unstructured":"Santos, M., Mayya, S., Notomista, G., & Egerstedt, M. (2019). Decentralized minimum-energy coverage control for time-varying density functions. In 2019 international symposium on multi-robot and multi-agent systems (MRS) (pp. 155\u2013161). IEEE.","DOI":"10.1109\/MRS.2019.8901076"},{"key":"9566_CR72","doi-asserted-by":"crossref","unstructured":"Schwager, M., Julian, B.\u00a0J., Angermann, M., & Rus, D. (2011). Eyes in the sky: Decentralized control for the deployment of robotic camera networks.","DOI":"10.1109\/JPROC.2011.2158377"},{"issue":"2","key":"9566_CR73","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1007\/s10694-010-0160-2","volume":"47","author":"D Morvan","year":"2011","unstructured":"Morvan, D. (2011). Physical phenomena and length scales governing the behaviour of wildfires: A case for physical modelling. Fire Technology, 47(2), 437\u2013460.","journal-title":"Fire Technology"},{"issue":"2","key":"9566_CR74","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1016\/S0360-1285(03)00017-0","volume":"29","author":"E Pastor","year":"2003","unstructured":"Pastor, E., Z\u00e1rate, L., Planas, E., & Arnaldos, J. (2003). Mathematical models and calculation systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science, 29(2), 139\u2013153.","journal-title":"Progress in Energy and Combustion Science"},{"key":"9566_CR75","doi-asserted-by":"crossref","unstructured":"Bailon-Ruiz, R., Lacroix, S., & Bit-Monnot, A. (2018). Planning to monitor wildfires with a fleet of uavs. In 2018 IEEE\/RSJ international conference on intelligent robots and systems (IROS) (pp. 4729\u20134734). IEEE.","DOI":"10.1109\/IROS.2018.8593859"},{"key":"9566_CR76","doi-asserted-by":"publisher","first-page":"33511","DOI":"10.1109\/ACCESS.2020.2967225","volume":"8","author":"J Xiao","year":"2020","unstructured":"Xiao, J., Wang, G., Zhang, Y., & Cheng, L. (2020). A distributed multi-agent dynamic area coverage algorithm based on reinforcement learning. IEEE Access, 8, 33511\u201333521.","journal-title":"IEEE Access"},{"key":"9566_CR77","unstructured":"Adepegba, A.\u00a0A., Miah, S., & Spinello, D. (2016). Multi-agent area coverage control using reinforcement learning. In The twenty-ninth international flairs conference."},{"key":"9566_CR78","unstructured":"Seraj, E., Wu, X., & Gombolay, M.\u00a0C. (2020). Firecommander: An interactive, probabilistic multi-agent environment for joint perception-action tasks. In arXiv preprint arXiv:2011.00165."},{"key":"9566_CR79","doi-asserted-by":"crossref","unstructured":"Zanol, R., Chiariotti, F., & Zanella, A. (2019). Drone mapping through multi-agent reinforcement learning. In 2019 IEEE wireless communications and networking conference (WCNC) (pp. 1\u20137). IEEE.","DOI":"10.1109\/WCNC.2019.8885873"},{"key":"9566_CR80","unstructured":"Seraj, E. (2022). Embodied team intelligence in multi-robot systems. In Proceedings of the 21st international conference on autonomous agents and multiagent systems (pp. 1869\u20131871)."},{"issue":"8","key":"9566_CR81","doi-asserted-by":"publisher","first-page":"1768","DOI":"10.2514\/1.G004106","volume":"42","author":"KD Julian","year":"2019","unstructured":"Julian, K. D., & Kochenderfer, M. J. (2019). Distributed wildfire surveillance with autonomous aircraft using deep reinforcement learning. Journal of Guidance, Control, and Dynamics, 42(8), 1768\u20131778.","journal-title":"Journal of Guidance, Control, and Dynamics"},{"key":"9566_CR82","doi-asserted-by":"crossref","unstructured":"Julian, K.\u00a0D., & Kochenderfer, M.\u00a0J. (2018). Autonomous distributed wildfire surveillance using deep reinforcement learning. In 2018 AIAA guidance, navigation, and control conference (p. 1589).","DOI":"10.2514\/6.2018-1589"},{"key":"9566_CR83","doi-asserted-by":"crossref","unstructured":"Viseras, A., Meissner, M., & Marchal, J. (2021). Wildfire front monitoring with multiple uavs using deep q-learning. IEEE Access.","DOI":"10.1109\/ACCESS.2021.3055651"},{"key":"9566_CR84","volume-title":"Reinforcement learning: An introduction","author":"RS Sutton","year":"2018","unstructured":"Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press."},{"key":"9566_CR85","doi-asserted-by":"crossref","unstructured":"Ure, N.\u00a0K., Omidshafiei, S., Lopez, B.\u00a0T., Agha-Mohammadi, A.-A., How, J.\u00a0P., & Vian, J. (2015). Online heterogeneous multiagent learning under limited communication with applications to forest fire management. In 2015 IEEE\/RSJ international conference on intelligent robots and systems (IROS) (pp. 5181\u20135188). IEEE.","DOI":"10.1109\/IROS.2015.7354107"},{"key":"9566_CR86","unstructured":"Seraj, E., Wang, Z., Paleja, R., Martin, D., Sklar, M., Patel, A., & Gombolay, M. (2022). Learning efficient diverse communication for cooperative heterogeneous teaming. In Proceedings of the 21st international conference on autonomous agents and multiagent systems (pp. 1173\u20131182)."},{"key":"9566_CR87","unstructured":"Seraj, E., Wang, Z., Paleja, R., Sklar, M., Patel, A., & Gombolay, M. (2021)Heterogeneous graph attention networks for learning diverse communication. arXiv preprint arXiv:2108.09568."},{"key":"9566_CR88","doi-asserted-by":"crossref","unstructured":"Beachly, E., Detweiler, C., Elbaum, S., Duncan, B., Hildebrandt, C., Twidwell, D., & Allen, C. (2018). Fire-aware planning of aerial trajectories and ignitions. In 2018 IEEE\/RSJ international conference on intelligent robots and systems (IROS) (pp. 685\u2013692). IEEE.","DOI":"10.1109\/IROS.2018.8593568"},{"issue":"1","key":"9566_CR89","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1115\/1.3658902","volume":"83","author":"RE Kalman","year":"1961","unstructured":"Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, 83(1), 95\u2013108.","journal-title":"Journal of Basic Engineering"},{"key":"9566_CR90","doi-asserted-by":"crossref","unstructured":"Akhlaghi, S., Zhou, N., & Huang, Z. (2017). Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation. In 2017 IEEE power and energy society general meeting (pp. 1\u20135). IEEE.","DOI":"10.1109\/PESGM.2017.8273755"},{"key":"9566_CR91","doi-asserted-by":"publisher","DOI":"10.1002\/0470045345","volume-title":"Optimal state estimation: Kalman, H infinity, and nonlinear approaches","author":"D Simon","year":"2006","unstructured":"Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches. Wiley."},{"key":"9566_CR92","doi-asserted-by":"publisher","first-page":"200","DOI":"10.1016\/j.cor.2018.07.023","volume":"101","author":"X Wang","year":"2019","unstructured":"Wang, X., Golden, B., & Wasil, E. (2019). A Steiner zone variable neighborhood search heuristic for the close-enough traveling salesman problem. Computers and Operations Research, 101, 200\u2013219.","journal-title":"Computers and Operations Research"},{"key":"9566_CR93","volume-title":"The traveling salesman problem: A computational study","author":"DL Applegate","year":"2006","unstructured":"Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2006). The traveling salesman problem: A computational study. Princeton University Press."},{"key":"9566_CR94","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1016\/j.neucom.2016.01.031","volume":"190","author":"L Kraemer","year":"2016","unstructured":"Kraemer, L., & Banerjee, B. (2016). Multi-agent reinforcement learning as a rehearsal for decentralized planning. Neurocomputing, 190, 82\u201394.","journal-title":"Neurocomputing"},{"key":"9566_CR95","unstructured":"Foerster, J., Assael, I.\u00a0A. , De\u00a0Freitas, N., & Whiteson, S. (2016). Learning to communicate with deep multi-agent reinforcement learning. In Advances in neural information processing systems (pp. 2137\u20132145)."},{"key":"9566_CR96","doi-asserted-by":"crossref","unstructured":"Seraj, E., Azimi, V., Abdallah, C., Hutchinson, S., Gombolay, M. (2021). Adaptive leader\u2013follower control for multi-robot teams with uncertain network structure. In 2021 American control conference (ACC). IEEE.","DOI":"10.23919\/ACC50511.2021.9482980"},{"key":"9566_CR97","doi-asserted-by":"crossref","unstructured":"Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A., Feron, E., & Egerstedt, M. (2017). The robotarium: A remotely accessible swarm robotics research testbed. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 1699\u20131706). IEEE.","DOI":"10.1109\/ICRA.2017.7989200"},{"key":"9566_CR98","doi-asserted-by":"crossref","unstructured":"Danoy, G., Brust, M.\u00a0R., & Bouvry, P. (2015). Connectivity stability in autonomous multi-level uav swarms for wide area monitoring. In Proceedings of the 5th ACM symposium on development and analysis of intelligent vehicular networks and applications (pp. 1\u20138). ACM.","DOI":"10.1145\/2815347.2815351"},{"key":"9566_CR99","doi-asserted-by":"crossref","unstructured":"Li, M., Lu, K., Zhu, H., Chen, M., Mao, S., & Prabhakaran, B. (2008 ). Robot swarm communication networks: Architectures, protocols, and applications. In 2008 third international conference on communications and networking in China (pp. 162\u2013166). IEEE.","DOI":"10.1109\/CHINACOM.2008.4684993"},{"key":"9566_CR100","unstructured":"Seraj, E., Silva, A., & Gombolay, M. (2019). Safe coordination of human\u2013robot firefighting teams, arXiv preprint arXiv:1903.06847."},{"issue":"30538","key":"9566_CR101","first-page":"12","volume":"1","author":"P Delamatar","year":"2013","unstructured":"Delamatar, P., Finley, A., & Babcock, C. (2013). Downloading and processing noaa hourly weather station data. Dim (ST), 1(30538), 12.","journal-title":"Dim (ST)"}],"container-title":["Autonomous Agents and Multi-Agent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10458-022-09566-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10458-022-09566-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10458-022-09566-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,27]],"date-time":"2024-09-27T18:23:09Z","timestamp":1727461389000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10458-022-09566-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6,24]]},"references-count":101,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2022,10]]}},"alternative-id":["9566"],"URL":"https:\/\/doi.org\/10.1007\/s10458-022-09566-6","relation":{},"ISSN":["1387-2532","1573-7454"],"issn-type":[{"type":"print","value":"1387-2532"},{"type":"electronic","value":"1573-7454"}],"subject":[],"published":{"date-parts":[[2022,6,24]]},"assertion":[{"value":"24 May 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 June 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"39"}}