{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:50:51Z","timestamp":1726851051004},"reference-count":53,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2021,11,9]],"date-time":"2021-11-09T00:00:00Z","timestamp":1636416000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,11,9]],"date-time":"2021-11-09T00:00:00Z","timestamp":1636416000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100008222","name":"Universit\u00e9 de Montpellier","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100008222","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004794","name":"Centre National de la Recherche Scientifique","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004794","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Auton Agent Multi-Agent Syst"],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1007\/s10458-021-09534-6","type":"journal-article","created":{"date-parts":[[2021,11,9]],"date-time":"2021-11-09T06:08:56Z","timestamp":1636438136000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Input addition and deletion in reinforcement: towards protean learning"],"prefix":"10.1007","volume":"36","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2934-351X","authenticated-orcid":false,"given":"Iago","family":"Bonnici","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2537-2321","authenticated-orcid":false,"given":"Abdelkader","family":"Goua\u00efch","sequence":"additional","affiliation":[]},{"given":"Fabien","family":"Michel","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,9]]},"reference":[{"key":"9534_CR1","unstructured":"Abramowitz, M., & Stegun, I.A. (1972). Lengendre functions. In: Handbook of mathematical functions: With formulas, graphs, and mathematical Tables, 9th edn., (pp. 771\u2013802)."},{"key":"9534_CR2","unstructured":"Bonnici, I. (2021). Towards protean learning: Accommodating signature changes in artificial agents. Ph.D Thesis, Universit\u00e9 de Montpellier"},{"key":"9534_CR3","doi-asserted-by":"publisher","unstructured":"Bonnici, I., Goua\u00efch, A., & Michel, F. (2019). Effects of input addition in learning for adaptive games: Towards learning with structural changes. In: EvoApplications: Applications of evolutionary computation, vol. LNCS, (pp. 172\u2013184). https:\/\/doi.org\/10.1007\/978-3-030-16692-2_12","DOI":"10.1007\/978-3-030-16692-2_12"},{"key":"9534_CR4","doi-asserted-by":"publisher","unstructured":"Busto, P.P., & Gall, J. (2017). Open set domain adaptation. In:International Conference on Computer Vision (ICCV), (pp. 754\u2013763). IEEE https:\/\/doi.org\/10.1109\/ICCV.2017.88","DOI":"10.1109\/ICCV.2017.88"},{"key":"9534_CR5","unstructured":"Caruana, R. (1994). Learning many related tasks at the same time with backpropagation. In: 7th International Conference on Neural Information Processing Systems. NIPS\u201994, (pp. 657\u2013664). MIT Press."},{"key":"9534_CR6","doi-asserted-by":"publisher","unstructured":"Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y., & Bahdanau, D. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Conference on Empirical methods in natural language processing (EMNLP), (pp. 1724\u20131734). Association for Computational Linguistics, Doha, Qatar. https:\/\/doi.org\/10.3115\/v1\/D14-1179","DOI":"10.3115\/v1\/D14-1179"},{"issue":"11","key":"9534_CR7","doi-asserted-by":"publisher","first-page":"2474","DOI":"10.1162\/NECO\\_a_00893","volume":"28","author":"Y Cui","year":"2016","unstructured":"Cui, Y., Ahmad, S., & Hawkins, J. (2016). Continuous online sequence learning with an unsupervised neural network model. Neural Computation, 28(11), 2474\u20132504. https:\/\/doi.org\/10.1162\/NECO_a_00893.","journal-title":"Neural Computation"},{"key":"9534_CR8","unstructured":"De Rosario-Martinez, H. (2015). Phia: Post-hoc interaction analysis."},{"key":"9534_CR9","doi-asserted-by":"publisher","unstructured":"Devin, C., Gupta, A., Darrell, T., Abbeel, P., & Levine, S. (2017). Learning modular neural network policies for multi-task and multi-robot transfer. In: International Conference on Robotics and Automation (ICRA), (pp. 2169\u20132176). IEEEhttps:\/\/doi.org\/10.1109\/ICRA.2017.7989250","DOI":"10.1109\/ICRA.2017.7989250"},{"issue":"2","key":"9534_CR10","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1016\/0364-0213(90)90002-E","volume":"14","author":"JL Elman","year":"1990","unstructured":"Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179\u2013211. https:\/\/doi.org\/10.1016\/0364-0213(90)90002-E.","journal-title":"Cognitive Science"},{"key":"9534_CR11","unstructured":"Frans, K., Ho, J., Chen, X., Abbeel, P., & Schulman, J. (2018). Meta learning shared hierarchies. arXiv arXiv:abs\/1710.09767."},{"issue":"4","key":"9534_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2523813","volume":"46","author":"J Gama","year":"2014","unstructured":"Gama, J., \u017dliobait\u0117, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys, 46(4), 1\u201337. https:\/\/doi.org\/10.1145\/2523813.","journal-title":"ACM Computing Surveys"},{"issue":"4","key":"9534_CR13","doi-asserted-by":"publisher","first-page":"254","DOI":"10.1002\/sam.11217","volume":"7","author":"L Ge","year":"2014","unstructured":"Ge, L., Gao, J., Ngo, H., Li, K., & Zhang, A. (2014). On handling negative transfer and imbalanced distributions in multiple source transfer learning: Multiple Source Transfer Learning. Statistical Analysis and Data Mining: The ASA Data Science Journal, 7(4), 254\u2013271. https:\/\/doi.org\/10.1002\/sam.11217.","journal-title":"Statistical Analysis and Data Mining: The ASA Data Science Journal"},{"key":"9534_CR14","unstructured":"Gu, S., Lillicrap, T., Sutskever, I., & Levine, S. (2016). Continuous deep Q-Learning with model-based acceleration. In: M.F. Balcan, K.Q. Weinberger (eds.) 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research, vol.\u00a048, pp. 2829\u20132838. PMLR, New York, New York, USA."},{"issue":"4","key":"9534_CR15","doi-asserted-by":"publisher","first-page":"693","DOI":"10.5465\/amj.2006.22083026","volume":"49","author":"AK Gupta","year":"2006","unstructured":"Gupta, A. K., Smith, K. G., & Shalley, C. E. (2006). The interplay between exploration and exploitation. Academy of Management Journal, 49(4), 693\u2013706. https:\/\/doi.org\/10.5465\/amj.2006.22083026.","journal-title":"Academy of Management Journal"},{"key":"9534_CR16","doi-asserted-by":"publisher","unstructured":"Hanna, C.J., Hickey, R.J., Charles, D.K., & Black, M.M. (2010). Modular reinforcement learning architectures for artificially intelligent agents in complex game environments. In: Symposium on Computational Intelligence and Games (CIG), pp. 380\u2013387. IEEE, Copenhagen, Denmark. https:\/\/doi.org\/10.1109\/ITW.2010.5593329","DOI":"10.1109\/ITW.2010.5593329"},{"key":"9534_CR17","unstructured":"Harel, M., & Mannor, S. (2011). Learning from multiple outlooks. In: 28th International Conference on International Conference on Machine Learning, ICML\u201911, (pp. 401\u2013408). Omnipress."},{"key":"9534_CR18","doi-asserted-by":"publisher","unstructured":"Heng, Wang., & Abraham, Z. (2015). Concept drift detection for streaming data. In: 2015 International Joint Conference on Neural Networks (IJCNN), (pp. 1\u20139). IEEE, Killarney, Ireland. https:\/\/doi.org\/10.1109\/IJCNN.2015.7280398","DOI":"10.1109\/IJCNN.2015.7280398"},{"key":"9534_CR19","volume-title":"Unsupervised learning: Foundations of neural computation","year":"1999","unstructured":"Hinton, G. E., & Sejnowski, T. J. (Eds.). (1999). Unsupervised learning: Foundations of neural computation. Computational Neuroscience. MIT Press."},{"issue":"433","key":"9534_CR20","doi-asserted-by":"publisher","first-page":"401","DOI":"10.1080\/01621459.1996.10476701","volume":"91","author":"MC Jones","year":"1996","unstructured":"Jones, M. C., Marron, J. S., & Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91(433), 401\u2013407. https:\/\/doi.org\/10.1080\/01621459.1996.10476701.","journal-title":"Journal of the American Statistical Association"},{"key":"9534_CR21","unstructured":"Kaplanis, C., Shanahan, M., & Clopath, C. (2018). Continual reinforcement learning with complex synapses. In: J.\u00a0Dy, A.\u00a0Krause (eds.) 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol.\u00a080, (pp. 2497\u20132506). PMLR."},{"issue":"5","key":"9534_CR22","doi-asserted-by":"publisher","first-page":"799","DOI":"10.1081\/SAP-120000222","volume":"19","author":"TA Khan\u0131ev","year":"2001","unstructured":"Khan\u0131ev, T. A., Unver, \u0130, & Maden, S. (2001). On the semi-Markovian random walk with two reflecting barriers. Stochastic Analysis and Applications, 19(5), 799\u2013819. https:\/\/doi.org\/10.1081\/SAP-120000222.","journal-title":"Stochastic Analysis and Applications"},{"key":"9534_CR23","unstructured":"Kingma, D.P., Ba, J. (2015). Adam: A method for stochastic optimization. In: Y. Bengio, Y. LeCun (eds.) 3rd International Conference on Learning Representations (ICLR)."},{"issue":"13","key":"9534_CR24","doi-asserted-by":"publisher","first-page":"3521","DOI":"10.1073\/pnas.1611835114","volume":"114","author":"J Kirkpatrick","year":"2017","unstructured":"Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., et al. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13), 3521\u20133526. https:\/\/doi.org\/10.1073\/pnas.1611835114.","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"9534_CR25","doi-asserted-by":"crossref","unstructured":"Lazaric, A. (2012). Transfer in reinforcement learning: A framework and a survey. In: M.\u00a0Wiering, M.\u00a0van Otterlo (eds.) Reinforcement Learning, vol.\u00a012, (pp. 143\u2013173). Springer.","DOI":"10.1007\/978-3-642-27645-3_5"},{"issue":"6","key":"9534_CR26","doi-asserted-by":"publisher","first-page":"1134","DOI":"10.1109\/TPAMI.2013.167","volume":"36","author":"W Li","year":"2014","unstructured":"Li, W., Duan, L., Xu, D., & Tsang, I. W. (2014). Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6), 1134\u20131148.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"9534_CR27","unstructured":"Lillicrap, T.P., Hunt, J.J., er\u00a0Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv e-prints p. arXiv:1509.02971"},{"key":"9534_CR28","doi-asserted-by":"publisher","first-page":"1261","DOI":"10.1016\/j.neucom.2017.06.084","volume":"275","author":"V Losing","year":"2018","unstructured":"Losing, V., Hammer, B., & Wersing, H. (2018). Incremental on-line learning: A review and comparison of state of the art algorithms. Neurocomputing, 275, 1261\u20131274. https:\/\/doi.org\/10.1016\/j.neucom.2017.06.084.","journal-title":"Neurocomputing"},{"issue":"7540","key":"9534_CR29","doi-asserted-by":"publisher","first-page":"529","DOI":"10.1038\/nature14236","volume":"518","author":"V Mnih","year":"2015","unstructured":"Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529\u2013533. https:\/\/doi.org\/10.1038\/nature14236.","journal-title":"Nature"},{"key":"9534_CR30","series-title":"Adaptive Computation and Machine Learning Series","volume-title":"Foundations of machine learning","author":"M Mohri","year":"2012","unstructured":"Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning. Adaptive Computation and Machine Learning Series. MIT Press."},{"key":"9534_CR31","unstructured":"Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in PyTorch."},{"key":"9534_CR32","unstructured":"R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing."},{"key":"9534_CR33","unstructured":"Ring, M.B. (1994). Continual learning in reinforcement environments. Ph.D Thesis, University of Texas at Austin."},{"key":"9534_CR34","unstructured":"Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., & Hadsell, R. (2016). Progressive neural networks. CoRR arXiv:abs\/1606.04671"},{"key":"9534_CR35","unstructured":"Saad, D. (1998). (ed.): On-line learning in neural networks. Publications of the Newton Institute. Cambridge University Press."},{"key":"9534_CR36","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","volume":"61","author":"J Schmidhuber","year":"2015","unstructured":"Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85\u2013117. https:\/\/doi.org\/10.1016\/j.neunet.2014.09.003.","journal-title":"Neural Networks"},{"key":"9534_CR37","doi-asserted-by":"publisher","first-page":"484","DOI":"10.1038\/nature16961","volume":"529","author":"D Silver","year":"2016","unstructured":"Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484\u2013503.","journal-title":"Nature"},{"issue":"1","key":"9534_CR38","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1162\/neco\\_a\\_01246","volume":"32","author":"S Sodhani","year":"2020","unstructured":"Sodhani, S., Chandar, S., & Bengio, Y. (2020). Toward training recurrent neural networks for lifelong learning. Neural Computation, 32(1), 1\u201335. https:\/\/doi.org\/10.1162\/neco_a_01246.","journal-title":"Neural Computation"},{"key":"9534_CR39","unstructured":"Spooner, T., Fearnley, J., Savani, R., Koukorinis, A. (2018). Market making via reinforcement learning. In: 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS \u201918, (pp. 434\u2013442). International Foundation for Autonomous Agents and Multiagent Systems."},{"key":"9534_CR40","unstructured":"Sutton, R.S., Barto, A.G. (2018). Reinforcement learning: An introduction, 2nd edn. Adaptive computation and machine learning series. MIT Press."},{"key":"9534_CR41","doi-asserted-by":"publisher","unstructured":"Tanaka, F., & Yamamura, M. (2003). Multitask reinforcement learning on the distribution of MDPs. In: International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium, vol.\u00a03, (pp. 1108\u20131113). IEEE. https:\/\/doi.org\/10.1109\/CIRA.2003.1222152.","DOI":"10.1109\/CIRA.2003.1222152"},{"issue":"7","key":"9534_CR42","first-page":"1633","volume":"10","author":"ME Taylor","year":"2009","unstructured":"Taylor, M. E., & Stone, P. (2009). Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning Research, 10(7), 1633\u20131685.","journal-title":"Journal of Machine Learning Research"},{"key":"9534_CR43","unstructured":"Teh, Y., Bapst, V., Czarnecki, W.M., Quan, J., Kirkpatrick, J., Hadsell, R., Heess, N., & Pascanu, R. (2017). Distral: Robust multitask reinforcement learning. In: I.\u00a0Guyon, U.V. Luxburg, S.\u00a0Bengio, H.\u00a0Wallach, R.\u00a0Fergus, S.\u00a0Vishwanathan, R.\u00a0Garnett (eds.) Advances in Neural Information Processing Systems 30, (pp. 4496\u20134506). Curran Associates, Inc."},{"key":"9534_CR44","unstructured":"Thrun, S. (1995). Is learning the N-th thing any easier than learning the first? In: 8th International Conference on Neural Information Processing Systems, NIPS\u201995, (pp. 640\u2013646). MIT Press."},{"key":"9534_CR45","doi-asserted-by":"publisher","unstructured":"Torrey, L., & Shavlik, J. (2010). Transfer learning. In: E.S. Olivas, J.D.M. Guerrero, M.\u00a0Martinez-Sober, J.R. Magdalena-Benedito, A.J. Serrano\u00a0L\u00f3pez (eds.) In Handbook of research on machine learning applications and trends: Algorithms, methods, and techniques, (pp. 242\u2013264). IGI Global. https:\/\/doi.org\/10.4018\/978-1-60566-766-9.ch011","DOI":"10.4018\/978-1-60566-766-9.ch011"},{"key":"9534_CR46","unstructured":"Tsymbal, A. (2004). The problem of concept drift: Definitions and related work."},{"key":"9534_CR47","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1016\/j.neunet.2017.09.017","volume":"97","author":"C Watanabe","year":"2018","unstructured":"Watanabe, C., Hiramatsu, K., & Kashino, K. (2018). Modular representation of layered neural networks. Neural Networks, 97, 62\u201373. https:\/\/doi.org\/10.1016\/j.neunet.2017.09.017.","journal-title":"Neural Networks"},{"issue":"1","key":"9534_CR48","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1007\/BF00116900","volume":"23","author":"G Widmer","year":"1996","unstructured":"Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1), 69\u2013101. https:\/\/doi.org\/10.1007\/BF00116900.","journal-title":"Machine Learning"},{"key":"9534_CR49","unstructured":"Xu, J., & Zhu, Z. (2018). Reinforced continual learning. In: S.\u00a0Bengio, H.\u00a0Wallach, H.\u00a0Larochelle, K.\u00a0Grauman, N.\u00a0Cesa-Bianchi, R.\u00a0Garnett (eds.) Advances in Neural Information Processing Systems 31, vol.\u00a031, (pp. 899\u2013908). Curran Associates, Inc."},{"key":"9534_CR50","doi-asserted-by":"crossref","unstructured":"Yang, Q., Chen, Y., Xue, G. R., Dai, W., & Yu, Y. (2009). Heterogeneous transfer learning for image clustering via the socialweb. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP (pp. 1-9).","DOI":"10.3115\/1687878.1687880"},{"issue":"3","key":"9534_CR51","doi-asserted-by":"publisher","first-page":"397","DOI":"10.1109\/TSMCC.2008.919172","volume":"38","author":"Yaochu Jin","year":"2008","unstructured":"Jin, Yaochu, & Sendhoff, B. (2008). Pareto-based multiobjective machine learning: An overview and case studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(3), 397\u2013415. https:\/\/doi.org\/10.1109\/TSMCC.2008.919172.","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)"},{"key":"9534_CR52","unstructured":"Zenke, F., Poole, B., & Ganguli, S. (2017). Continual learning through synaptic intelligence. In: D.\u00a0Precup, Y.W. Teh (eds.) 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol.\u00a070, pp. 3987\u20133995. PMLR, International Convention Centre"},{"key":"9534_CR53","doi-asserted-by":"publisher","unstructured":"\u017dliobait\u0117, I., Pechenizkiy, M., & Gama, J. (2016). An overview of concept drift applications. In: N.\u00a0Japkowicz, J.\u00a0Stefanowski (eds.) Big data analysis: New algorithms for a new society, vol.\u00a016, pp. 91\u2013114. Springer International Publishing, Cham https:\/\/doi.org\/10.1007\/978-3-319-26989-4_4","DOI":"10.1007\/978-3-319-26989-4_4"}],"container-title":["Autonomous Agents and Multi-Agent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10458-021-09534-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10458-021-09534-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10458-021-09534-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,4,28]],"date-time":"2022-04-28T17:32:34Z","timestamp":1651167154000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10458-021-09534-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11,9]]},"references-count":53,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2022,4]]}},"alternative-id":["9534"],"URL":"https:\/\/doi.org\/10.1007\/s10458-021-09534-6","relation":{},"ISSN":["1387-2532","1573-7454"],"issn-type":[{"value":"1387-2532","type":"print"},{"value":"1573-7454","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,11,9]]},"assertion":[{"value":"15 September 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 November 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}],"article-number":"4"}}