{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,27]],"date-time":"2024-07-27T17:18:07Z","timestamp":1722100687918},"reference-count":16,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2021,5,2]],"date-time":"2021-05-02T00:00:00Z","timestamp":1619913600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2021,5,2]],"date-time":"2021-05-02T00:00:00Z","timestamp":1619913600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"name":"DFG","award":["BO 4141\/1-3"]},{"name":"Technische Universit\u00e4t Hamburg"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Adv Comput Math"],"published-print":{"date-parts":[[2021,6]]},"abstract":"Abstract<\/jats:title>The dynamics of particle processes can be described by population balance equations which are governed by phenomena including growth, nucleation, breakage and aggregation. Estimating the kinetics of the aggregation phenomena from measured density data constitutes an ill-conditioned inverse problem. In this work, we focus on the aggregation problem and present an approach to estimate the aggregation kernel in discrete, low rank form from given (measured or simulated) data. The low-rank assumption for the kernel allows the application of fast techniques for the evaluation of the aggregation integral ($\\mathcal {O}(n\\log n)$<\/jats:tex-math>\n O<\/mml:mi>\n (<\/mml:mo>\n n<\/mml:mi>\n log<\/mml:mi>\n n<\/mml:mi>\n )<\/mml:mo>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> instead of $\\mathcal {O}(n^{2})$<\/jats:tex-math>\n O<\/mml:mi>\n (<\/mml:mo>\n \n \n n<\/mml:mi>\n <\/mml:mrow>\n \n 2<\/mml:mn>\n <\/mml:mrow>\n <\/mml:msup>\n )<\/mml:mo>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> where n<\/jats:italic> denotes the number of unknowns in the discretization) and reduces the dimension of the optimization problem, allowing for efficient and accurate kernel reconstructions. We provide and compare two approaches which we will illustrate in numerical tests.<\/jats:p>","DOI":"10.1007\/s10444-021-09871-w","type":"journal-article","created":{"date-parts":[[2021,5,3]],"date-time":"2021-05-03T15:39:10Z","timestamp":1620056350000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Reconstruction of low-rank aggregation kernels in univariate population balance equations"],"prefix":"10.1007","volume":"47","author":[{"given":"Robin","family":"Ahrens","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4399-4442","authenticated-orcid":false,"given":"Sabine","family":"Le Borne","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,2]]},"reference":[{"issue":"1","key":"9871_CR1","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1006\/jcis.1996.0530","volume":"183","author":"AS Bramley","year":"1996","unstructured":"Bramley, A.S., Hounslow, M.J., Ryall, R.L.: Aggregation during precipitation from solution: A method for extracting rates from experimental data. J. Colloid Interface Sci. 183(1), 155\u2013165 (1996)","journal-title":"J. Colloid Interface Sci."},{"issue":"0","key":"9871_CR2","first-page":"1242","volume":"2","author":"NJ-B Brunel","year":"2008","unstructured":"Brunel, N.J.-B.: Parameter estimation of ODEs via nonparametric estimators. Electronic Journal of Statistics 2(0), 1242\u20131267 (2008)","journal-title":"Electronic Journal of Statistics"},{"key":"9871_CR3","first-page":"316","volume":"2","author":"A Buchanan","year":"2005","unstructured":"Buchanan, A., Fitzgibbon, A.: Damped Newton algorithms for matrix factorization with missing data. 2012 IEEE Conference on Computer Vision and Pattern Recognition 2, 316\u2013322 (2005)","journal-title":"2012 IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"9871_CR4","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1016\/j.laa.2003.11.024","volume":"393","author":"M Catral","year":"2004","unstructured":"Catral, M., Han, L., Neumann, M., Plemmons, R.J.: On reduced rank nonnegative matrix factorization for symmetric nonnegative matrices. Linear Algebra and its Applications 393, 107\u2013126 (2004)","journal-title":"Linear Algebra and its Applications"},{"issue":"42","key":"9871_CR5","doi-asserted-by":"publisher","first-page":"10530","DOI":"10.1021\/acs.iecr.5b01368","volume":"54","author":"J Chakraborty","year":"2015","unstructured":"Chakraborty, J., Kumar, J., Singh, M., Mahoney, A., Ramkrishna, D.: Inverse problems in population balances. Determination of aggregation kernel by weighted residuals. Industrial & Engineering Chemistry Research 54(42), 10530\u201310538 (2015)","journal-title":"Industrial & Engineering Chemistry Research"},{"key":"9871_CR6","doi-asserted-by":"publisher","first-page":"5239","DOI":"10.1109\/TSP.2019.2937282","volume":"67","author":"Y Chi","year":"2018","unstructured":"Chi, Y., Lu, Y.M., Chen, Y.: Nonconvex optimization meets low-rank matrix factorization: an overview. IEEE Trans. Signal Process 67, 5239\u20135269 (2018)","journal-title":"IEEE Trans. Signal Process"},{"key":"9871_CR7","doi-asserted-by":"publisher","first-page":"210","DOI":"10.1016\/j.compchemeng.2017.03.018","volume":"103","author":"H Eisenschmidt","year":"2017","unstructured":"Eisenschmidt, H., Soumaya, M., Bajcinca, N., Le Borne, S., Sundmacher, K.: Estimation of aggregation kernels based on Laurent polynomial approximation. Comput. Chem. Eng. 103, 210\u2013217 (2017)","journal-title":"Comput. Chem. Eng."},{"key":"9871_CR8","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1007\/s00607-006-0174-2","volume":"78","author":"W Hackbusch","year":"2006","unstructured":"Hackbusch, W.: On the efficient evaluation of coalescence integrals in population balance models. Computing 78, 145\u2013159 (2006)","journal-title":"Computing"},{"issue":"1","key":"9871_CR9","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1109\/TSP.2013.2285514","volume":"62","author":"K Huang","year":"2014","unstructured":"Huang, K., Sidiropoulos, N.D., Swami, A.: Non-negative matrix factorization revisited: uniqueness and algorithm for symmetric decomposition. IEEE Trans. Signal Process. 62(1), 211\u2013224 (2014)","journal-title":"IEEE Trans. Signal Process."},{"key":"9871_CR10","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1016\/j.compchemeng.2014.12.011","volume":"74","author":"S Le Borne","year":"2015","unstructured":"Le Borne, S., Shahmuradyan, L., Sundmacher, K.: Fast evaluation of univariate aggregation integrals on equidistant grids. Comput. Chem Eng. 74, 115\u2013127 (2015)","journal-title":"Comput. Chem Eng."},{"issue":"3","key":"9871_CR11","doi-asserted-by":"publisher","first-page":"974","DOI":"10.11591\/ijece.v6i3.pp974-979","volume":"6","author":"P Vidyullatha","year":"2016","unstructured":"Vidyullatha, P., Rajeswara Rao, D.: Machine learning techniques on multidimensional curve fitting data based on r- square and chi-square methods. International Journal of Electrical and Computer Engineering (IJECE) 6(3), 974 (2016)","journal-title":"International Journal of Electrical and Computer Engineering (IJECE)"},{"issue":"1","key":"9871_CR12","doi-asserted-by":"publisher","first-page":"282","DOI":"10.1016\/j.ces.2004.11.071","volume":"61","author":"M Peglow","year":"2006","unstructured":"Peglow, M., Kumar, J., Warnecke, G., Heinrich, S., M\u00f6rl, L.: A new technique to determine rate constants for growth and agglomeration with size- and time-dependent nuclei formation. Chem. Eng. Sci. 61(1), 282\u2013292 (2006)","journal-title":"Chem. Eng. Sci."},{"issue":"2","key":"9871_CR13","doi-asserted-by":"publisher","first-page":"78","DOI":"10.1049\/iet-syb:20060067","volume":"1","author":"M Peifer","year":"2007","unstructured":"Peifer, M., Timmer, J.: Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting. IET Syst. Biol. 1(2), 78\u201388 (2007)","journal-title":"IET Syst. Biol."},{"issue":"4","key":"9871_CR14","doi-asserted-by":"publisher","first-page":"698","DOI":"10.1016\/j.compchemeng.2005.11.008","volume":"30","author":"AA Poyton","year":"2006","unstructured":"Poyton, A.A., Varziri, M.S., McAuley, K.B., McLellan, P.J., Ramsay, J.O.: Parameter estimation in continuous-time dynamic models using principal differential analysis. Comput. Chem. Eng. 30(4), 698\u2013708 (2006)","journal-title":"Comput. Chem. Eng."},{"issue":"16","key":"9871_CR15","doi-asserted-by":"publisher","first-page":"4884","DOI":"10.1016\/j.ces.2010.05.039","volume":"65","author":"R Ramachandran","year":"2010","unstructured":"Ramachandran, R., Barton, P.I.: Effective parameter estimation within a multi-dimensional population balance model framework. Chem. Eng. Sci. 65(16), 4884\u20134893 (2010)","journal-title":"Chem. Eng. Sci."},{"key":"9871_CR16","unstructured":"Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C. K.I., Culotta, A. (eds.) Advances in neural information processing systems, vol. 22, pp. 2080\u20132088. Curran Associates, Inc. (2009)"}],"container-title":["Advances in Computational Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10444-021-09871-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10444-021-09871-w\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10444-021-09871-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,6,21]],"date-time":"2021-06-21T08:16:27Z","timestamp":1624263387000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10444-021-09871-w"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5,2]]},"references-count":16,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2021,6]]}},"alternative-id":["9871"],"URL":"https:\/\/doi.org\/10.1007\/s10444-021-09871-w","relation":{},"ISSN":["1019-7168","1572-9044"],"issn-type":[{"value":"1019-7168","type":"print"},{"value":"1572-9044","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,5,2]]},"assertion":[{"value":"1 November 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 April 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 May 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"39"}}