{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T17:40:03Z","timestamp":1725039603947},"reference-count":52,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2021,5,11]],"date-time":"2021-05-11T00:00:00Z","timestamp":1620691200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2021,5,11]],"date-time":"2021-05-11T00:00:00Z","timestamp":1620691200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["315077451"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["315077451"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["314838170"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["314838170"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000121","name":"Division of Mathematical Sciences","doi-asserted-by":"publisher","award":["DMS-1720257"],"id":[{"id":"10.13039\/100000121","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000121","name":"Division of Mathematical Sciences","doi-asserted-by":"publisher","award":["DMS-1819110"],"id":[{"id":"10.13039\/100000121","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000121","name":"Division of Mathematical Sciences","doi-asserted-by":"publisher","award":["DMS-1439786"],"id":[{"id":"10.13039\/100000121","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000121","name":"Division of Mathematical Sciences","doi-asserted-by":"publisher","award":["DMS-1439786"],"id":[{"id":"10.13039\/100000121","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000893","name":"Simons Foundation","doi-asserted-by":"publisher","award":["50736"],"id":[{"id":"10.13039\/100000893","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000893","name":"Simons Foundation","doi-asserted-by":"publisher","award":["50736"],"id":[{"id":"10.13039\/100000893","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Max Planck Institute for Dynamics of Complex Technical Systems (MPI Magdeburg)"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Adv Comput Math"],"published-print":{"date-parts":[[2021,6]]},"abstract":"Abstract<\/jats:title>In this paper, we extendthe structure-preserving interpolatory model reduction framework, originally developed for linear systems, to structured bilinear control systems. Specifically, we give explicit construction formulae for the model reduction bases to satisfy different types of interpolation conditions. First, we establish the analysis for transfer function interpolation for single-input single-output structured bilinear systems. Then, we extend these results to the case of multi-input multi-output structured bilinear systems by matrix interpolation. The effectiveness of our structure-preserving approach is illustrated by means of various numerical examples.<\/jats:p>","DOI":"10.1007\/s10444-021-09863-w","type":"journal-article","created":{"date-parts":[[2021,5,11]],"date-time":"2021-05-11T09:05:43Z","timestamp":1620723943000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":13,"title":["Structure-preserving interpolation of bilinear control systems"],"prefix":"10.1007","volume":"47","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3362-4103","authenticated-orcid":false,"given":"Peter","family":"Benner","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4564-5999","authenticated-orcid":false,"given":"Serkan","family":"Gugercin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1667-4862","authenticated-orcid":false,"given":"Steffen W. R.","family":"Werner","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,11]]},"reference":[{"issue":"3","key":"9863_CR1","doi-asserted-by":"publisher","first-page":"192","DOI":"10.1109\/TSSC.1970.300341","volume":"6","author":"RR Mohler","year":"1970","unstructured":"Mohler, R.R.: Natural bilinear control processes. IEEE Transactions on Systems Science and Cybernetics 6(3), 192\u2013197 (1970). https:\/\/doi.org\/10.1109\/TSSC.1970.300341","journal-title":"IEEE Transactions on Systems Science and Cybernetics"},{"key":"9863_CR2","unstructured":"Mohler, R.R.: Bilinear control processes: With applications to engineering, ecology and medicine. Mathematics in Science and Engineering, vol. 106. Academic Press, New York, London (1973)"},{"issue":"1","key":"9863_CR3","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/0378-7796(93)90064-L","volume":"26","author":"S Al-Baiyat","year":"1993","unstructured":"Al-Baiyat, S., Farag, A.S., Bettayeb, M.: Transient approximation of a bilinear two-area interconnected power system. Electr. Power Syst. Res. 26(1), 11\u201319 (1993). https:\/\/doi.org\/10.1016\/0378-7796(93)90064-L","journal-title":"Electr. Power Syst. Res."},{"key":"9863_CR4","unstructured":"Ou, Y.: Optimal control of a class of nonlinear parabolic PDE systems arising in fusion plasma current profile dynamics. Ph.D. Thesis, Lehigh University (2010)"},{"issue":"3","key":"9863_CR5","doi-asserted-by":"publisher","first-page":"031002","DOI":"10.1115\/1.4025337","volume":"136","author":"K Qian","year":"2014","unstructured":"Qian, K., Zhang, Y.: Bilinear model predictive control of plasma keyhole pipe welding process. J. Manuf. Sci. Eng. 136(3), 031002 (2014). https:\/\/doi.org\/10.1115\/1.4025337","journal-title":"J. Manuf. Sci. Eng."},{"key":"9863_CR6","doi-asserted-by":"publisher","first-page":"012055","DOI":"10.1088\/1742-6596\/1245\/1\/012055","volume":"1245","author":"J Saputra","year":"2019","unstructured":"Saputra, J., Saragih, R., Handayani, D.: Robust ${H}_{\\infty }$ controller for bilinear system to minimize HIV concentration in blood plasma. J. Phys.: Conf. Ser. 1245, 012055 (2019). https:\/\/doi.org\/10.1088\/1742-6596\/1245\/1\/012055","journal-title":"J. Phys.: Conf. Ser."},{"key":"9863_CR7","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1007\/BF02546499","volume":"59","author":"T Carleman","year":"1932","unstructured":"Carleman, T.: Application de la th\u00e9orie des \u00e9quations int\u00e9grales lin\u00e9aires aux syst\u00e8mes d\u2019\u00e9quations diff\u00e9rentielles non lin\u00e9aires. Acta Math. 59, 63\u201387 (1932). https:\/\/doi.org\/10.1007\/BF02546499","journal-title":"Acta Math."},{"key":"9863_CR8","doi-asserted-by":"publisher","DOI":"10.1142\/1347","volume-title":"Nonlinear dynamical systems and Carleman linearization","author":"K Kowalski","year":"1991","unstructured":"Kowalski, K., Steeb, W-H: Nonlinear dynamical systems and Carleman linearization. World Scientific, Singapore (1991). https:\/\/doi.org\/10.1142\/1347"},{"key":"9863_CR9","doi-asserted-by":"crossref","unstructured":"Khapalov, A.Y.: Controllability of the semilinear parabolic equation governed by a multiplicative control in the reaction term: a qualitative approach. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), vol. 2, pp. 1487\u20131491 (2003)","DOI":"10.1109\/CDC.2003.1272822"},{"key":"9863_CR10","doi-asserted-by":"publisher","unstructured":"Korpeoglu, S.G., Kucuk, I.: Optimal control of a bilinear system with a quadratic cost functional. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1\u20136. https:\/\/doi.org\/10.1109\/ICCUBEA.2018.8697554 (2018)","DOI":"10.1109\/ICCUBEA.2018.8697554"},{"issue":"2","key":"9863_CR11","doi-asserted-by":"publisher","first-page":"686","DOI":"10.1137\/09075041X","volume":"49","author":"P Benner","year":"2011","unstructured":"Benner, P., Damm, T.: Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM Control Opt. 49(2), 686\u2013711 (2011). https:\/\/doi.org\/10.1137\/09075041X","journal-title":"SIAM Control Opt."},{"issue":"1","key":"9863_CR12","doi-asserted-by":"publisher","first-page":"805","DOI":"10.1002\/pamm.201110391","volume":"11","author":"P Benner","year":"2011","unstructured":"Benner, P., Breiten, T.: On H2-model reduction of linear parameter-varying systems. PAMM 11(1), 805\u2013806 (2011). https:\/\/doi.org\/10.1002\/pamm.201110391","journal-title":"PAMM"},{"issue":"2","key":"9863_CR13","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1080\/13873954.2014.924534","volume":"21","author":"A Bruns","year":"2015","unstructured":"Bruns, A., Benner, P.: Parametric model order reduction of thermal models using the bilinear interpolatory rational Krylov algorithm. MCMDS 21 (2), 103\u2013129 (2015). https:\/\/doi.org\/10.1080\/13873954.2014.924534","journal-title":"MCMDS"},{"key":"9863_CR14","doi-asserted-by":"publisher","first-page":"2241","DOI":"10.1007\/s10444-019-09695-9","volume":"45","author":"P Benner","year":"2019","unstructured":"Benner, P., Cao, X., Schilders, W.: A bilinear ${\\mathscr{H}}_{2}$ model order reduction approach to linear parameter-varying systems. Adv. Comp. Math. 45, 2241\u20132271 (2019). https:\/\/doi.org\/10.1007\/s10444-019-09695-9","journal-title":"Adv. Comp. Math."},{"key":"9863_CR15","doi-asserted-by":"publisher","unstructured":"Hsu, C.S., Desai, U.B., Crawley, C.A.: Realization algorithms and approximation methods of bilinear systems. In: The 22nd IEEE Conference on Decision and Control, San Antonio, TX, USA, pp. 783\u2013788. https:\/\/doi.org\/10.1109\/CDC.1983.269628 (1983)","DOI":"10.1109\/CDC.1983.269628"},{"issue":"2\u20133","key":"9863_CR16","doi-asserted-by":"publisher","first-page":"406","DOI":"10.1016\/j.laa.2005.04.032","volume":"415","author":"Z Bai","year":"2006","unstructured":"Bai, Z., Skoogh, D.: A projection method for model reduction of bilinear dynamical systems. Lin. Alg. App. 415(2\u20133), 406\u2013425 (2006). https:\/\/doi.org\/10.1016\/j.laa.2005.04.032","journal-title":"Lin. Alg. App."},{"issue":"2","key":"9863_CR17","doi-asserted-by":"publisher","first-page":"399","DOI":"10.1108\/03321640710727755","volume":"26","author":"M Condon","year":"2007","unstructured":"Condon, M., Ivanov, R.: Krylov subspaces from bilinear representations of nonlinear systems. Compel-Int. J. Comp. Math. Electr. Electron. Eng. 26(2), 399\u2013406 (2007). https:\/\/doi.org\/10.1108\/03321640710727755","journal-title":"Compel-Int. J. Comp. Math. Electr. Electron. Eng."},{"key":"9863_CR18","doi-asserted-by":"publisher","unstructured":"Feng, L., Benner, P.: A note on projection techniques for model order reduction of bilinear systems. In: AIP Conference Proceedings. https:\/\/doi.org\/10.1063\/1.2790110, vol. 936, pp 208\u2013211 (2007)","DOI":"10.1063\/1.2790110"},{"issue":"8","key":"9863_CR19","doi-asserted-by":"publisher","first-page":"443","DOI":"10.1016\/j.sysconle.2010.06.003","volume":"59","author":"T Breiten","year":"2010","unstructured":"Breiten, T., Damm, T.: Krylov subspace methods for model order reduction of bilinear control systems. SCL 59(8), 443\u2013450 (2010). https:\/\/doi.org\/10.1016\/j.sysconle.2010.06.003","journal-title":"SCL"},{"key":"9863_CR20","series-title":"Computational Science & Engineering","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611976083","volume-title":"Interpolatory methods for model reduction","author":"AC Antoulas","year":"2020","unstructured":"Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory methods for model reduction. Computational Science & Engineering. Society for Industrial and Applied Mathematics, Philadelphia, PA (2020). https:\/\/doi.org\/10.1137\/1.9781611976083"},{"issue":"2","key":"9863_CR21","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1016\/S0005-1098(01)00204-7","volume":"38","author":"L Zhang","year":"2002","unstructured":"Zhang, L., Lam, J.: On H2 model reduction of bilinear systems. Automatica 38(2), 205\u2013216 (2002). https:\/\/doi.org\/10.1016\/S0005-1098(01)00204-7","journal-title":"Automatica"},{"issue":"3","key":"9863_CR22","doi-asserted-by":"publisher","first-page":"859","DOI":"10.1137\/110836742","volume":"33","author":"P Benner","year":"2012","unstructured":"Benner, P., Breiten, T.: Interpolation-based ${\\mathscr{H}}_2$-model reduction of bilinear control systems. SIAM Matrix 33(3), 859\u2013885 (2012). https:\/\/doi.org\/10.1137\/110836742","journal-title":"SIAM Matrix"},{"issue":"2","key":"9863_CR23","doi-asserted-by":"publisher","first-page":"549","DOI":"10.1137\/130947830","volume":"36","author":"GM Flagg","year":"2015","unstructured":"Flagg, G.M., Gugercin, S.: Multipoint Volterra series interpolation and ${\\mathscr{H}}_2$ optimal model reduction of bilinear systems. SIAM Matrix 36(2), 549\u2013579 (2015). https:\/\/doi.org\/10.1137\/130947830","journal-title":"SIAM Matrix"},{"issue":"5","key":"9863_CR24","doi-asserted-by":"publisher","first-page":"B889","DOI":"10.1137\/15M1041432","volume":"38","author":"AC Antoulas","year":"2016","unstructured":"Antoulas, A.C., Gosea, I.V., Ionita, A.C.: Model reduction of bilinear systems in the Loewner framework. SIAM Sci. Comp. 38(5), B889\u2013B916 (2016). https:\/\/doi.org\/10.1137\/15M1041432","journal-title":"SIAM Sci. Comp."},{"key":"9863_CR25","doi-asserted-by":"publisher","unstructured":"Gosea, I.V., Pontes Duff, I., Benner, P., Antoulas, A.C.: Model order reduction of bilinear time-delay systems. In: Proc. of 18th European Control Conference (ECC), pp. 2289\u20132294. https:\/\/doi.org\/10.23919\/ECC.2019.8796085 (2019)","DOI":"10.23919\/ECC.2019.8796085"},{"issue":"3","key":"9863_CR26","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1016\/j.sysconle.2008.10.016","volume":"58","author":"CA Beattie","year":"2009","unstructured":"Beattie, C.A., Gugercin, S.: Interpolatory projection methods for structure-preserving model reduction. SCL 58(3), 225\u2013232 (2009). https:\/\/doi.org\/10.1016\/j.sysconle.2008.10.016","journal-title":"SCL"},{"key":"9863_CR27","volume-title":"Nonlinear system theory: The Volterra\/Wiener approach","author":"WJ Rugh","year":"1981","unstructured":"Rugh, W.J.: Nonlinear system theory: The Volterra\/Wiener approach. Johns Hopkins Press, Baltimore (1981)"},{"issue":"5","key":"9863_CR28","doi-asserted-by":"publisher","first-page":"B1010","DOI":"10.1137\/130906635","volume":"35","author":"S Gugercin","year":"2013","unstructured":"Gugercin, S., Stykel, T., Wyatt, S.: Model reduction of descriptor systems by interpolatory projection methods. SIAM Sci. Comp. 35(5), B1010\u2013B1033 (2013). https:\/\/doi.org\/10.1137\/130906635","journal-title":"SIAM Sci. Comp."},{"key":"9863_CR29","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.sysconle.2016.08.008","volume":"97","author":"P Benner","year":"2016","unstructured":"Benner, P., Goyal, P.: Multipoint interpolation of Volterra series and ${\\mathscr{H}}_2$-model reduction for a family of bilinear descriptor systems. SCL 97, 1\u201311 (2016). https:\/\/doi.org\/10.1016\/j.sysconle.2016.08.008","journal-title":"SCL"},{"key":"9863_CR30","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1016\/j.cam.2016.11.009","volume":"315","author":"MI Ahmad","year":"2017","unstructured":"Ahmad, M.I., Benner, P., Goyal, P.: Krylov subspace-based model reduction for a class of bilinear descriptor systems. Comp. Appl. Math. 315, 303\u2013318 (2017). https:\/\/doi.org\/10.1016\/j.cam.2016.11.009","journal-title":"Comp. Appl. Math."},{"issue":"2","key":"9863_CR31","doi-asserted-by":"publisher","first-page":"609","DOI":"10.1137\/060666123","volume":"30","author":"S Gugercin","year":"2008","unstructured":"Gugercin, S., Antoulas, A.C., Beattie, C.: ${\\mathscr{H}}_2$ model reduction for large-scale linear dynamical systems. SIAM Matrix 30(2), 609\u2013638 (2008). https:\/\/doi.org\/10.1137\/060666123","journal-title":"SIAM Matrix"},{"issue":"2","key":"9863_CR32","doi-asserted-by":"publisher","first-page":"B239","DOI":"10.1137\/14097255X","volume":"37","author":"P Benner","year":"2015","unstructured":"Benner, P., Breiten, T.: Two-sided projection methods for nonlinear model order reduction. SIAM Sci. Comp. 37(2), B239\u2013B260 (2015). https:\/\/doi.org\/10.1137\/14097255X","journal-title":"SIAM Sci. Comp."},{"key":"9863_CR33","unstructured":"Wyatt, S.: Issues in interpolatory model reduction: Inexact solves, second-order systems and DAEs. Ph.D. Thesis, VTech. http:\/\/hdl.handle.net\/10919\/27668 (2012)"},{"key":"9863_CR34","unstructured":"Beattie, C.A., Benner, P.: ${\\mathscr{H}}_2$-optimality conditions for structured dynamical systems. Preprint MPIMD\/14-18, Max Planck Institute Magdeburg. https:\/\/csc.mpi-magdeburg.mpg.de\/preprints\/2014\/18\/ (2014)"},{"key":"9863_CR35","doi-asserted-by":"publisher","unstructured":"Mlinari\u0107, P: Structure-preserving model order reduction for network systems. Dissertation, Department of Mathematics, Otto von Guericke University. https:\/\/doi.org\/10.25673\/33570 (2020)","DOI":"10.25673\/33570"},{"issue":"10","key":"9863_CR36","doi-asserted-by":"publisher","first-page":"7","DOI":"10.1016\/j.ifacol.2016.07.464","volume":"49","author":"I Pontes Duff","year":"2016","unstructured":"Pontes Duff, I., Gugercin, S., Beattie, C., Poussot-Vassal, C., Seren, C.: ${\\mathscr{H}}_{2}$-optimality conditions for reduced time-delay systems of dimensions one. IFAC-Papers Online 49(10), 7\u201312 (2016). https:\/\/doi.org\/10.1016\/j.ifacol.2016.07.464. 13th IFAC on Time Delay Systems TDS 2019","journal-title":"IFAC-Papers Online"},{"key":"9863_CR37","doi-asserted-by":"publisher","unstructured":"Pontes Duff, I., Poussot-Vassal, C., Seren, C.: Realization independent single time-delay dynamical model interpolation and ${\\mathscr{H}}_2$-optimal approximation. In: 54th IEEE Conference on Decision and Control (CDC), pp. 4662\u20134667. https:\/\/doi.org\/10.1109\/CDC.2015.7402946 (2015)","DOI":"10.1109\/CDC.2015.7402946"},{"key":"9863_CR38","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.sysconle.2018.05.003","volume":"117","author":"I Pontes Duff","year":"2018","unstructured":"Pontes Duff, I., Poussot-Vassal, C., Seren, C.: ${\\mathscr{H}}_{2}$-optimal model approximation by input\/output-delay structured reduced-order models. SCL 117, 60\u201367 (2018). https:\/\/doi.org\/10.1016\/j.sysconle.2018.05.003","journal-title":"SCL"},{"key":"9863_CR39","doi-asserted-by":"publisher","unstructured":"Beattie, C.A., Gugercin, S.: Realization-independent ${\\mathscr{H}}_2$-approximation. In: 51st IEEE Conference on Decision and Control (CDC), pp. 4953\u20134958. https:\/\/doi.org\/10.1109\/CDC.2012.6426344 (2012)","DOI":"10.1109\/CDC.2012.6426344"},{"issue":"2-3","key":"9863_CR40","doi-asserted-by":"publisher","first-page":"634","DOI":"10.1016\/j.laa.2007.03.008","volume":"425","author":"AJ Mayo","year":"2007","unstructured":"Mayo, A.J., Antoulas, A.C.: A framework for the solution of the generalized realization problem. Lin. Alg. App. 425(2-3), 634\u2013662 (2007). https:\/\/doi.org\/10.1016\/j.laa.2007.03.008. Special Issue in honor of P. A. Fuhrmann, Edited by A. C. Antoulas, U. Helmke, J. Rosenthal, V. Vinnikov, and E. Zerz","journal-title":"Lin. Alg. App."},{"issue":"1","key":"9863_CR41","doi-asserted-by":"publisher","first-page":"e201900224","DOI":"10.1002\/pamm.201900224","volume":"19","author":"RS Beddig","year":"2019","unstructured":"Beddig, R.S., Benner, P., Dorschky, I., Reis, T., Schwerdtner, P., Voigt, M., Werner, S.W.R.: Model reduction for second-order dynamical systems revisited. PAMM 19(1), e201900224 (2019). https:\/\/doi.org\/10.1002\/pamm.201900224","journal-title":"PAMM"},{"key":"9863_CR42","unstructured":"Beddig, R.S., Benner, P., Dorschky, I., Reis, T., Schwerdtner, P., Voigt, M., Werner, S.W.R.: Structure-preserving model reduction for dissipative mechanical systems. arXiv:https:\/\/arxiv.org\/abs\/2010.06331. math.OC (2020)"},{"issue":"4","key":"9863_CR43","doi-asserted-by":"publisher","first-page":"1496","DOI":"10.1137\/16M1086200","volume":"38","author":"N Aliyev","year":"2017","unstructured":"Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M.: Large-scale computation of ${\\mathscr{L}}_{\\infty }$-norms by a greedy subspace method. SIAM Matrix 38(4), 1496\u20131516 (2017). https:\/\/doi.org\/10.1137\/16M1086200","journal-title":"SIAM Matrix"},{"issue":"1","key":"9863_CR44","doi-asserted-by":"publisher","first-page":"751","DOI":"10.1002\/pamm.201710343","volume":"17","author":"N Aliyev","year":"2017","unstructured":"Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M.: A greedy subspace method for computing the ${\\mathscr{L}}_{\\infty }$-norm. PAMM 17 (1), 751\u2013752 (2017). https:\/\/doi.org\/10.1002\/pamm.201710343","journal-title":"PAMM"},{"issue":"2","key":"9863_CR45","doi-asserted-by":"publisher","first-page":"928","DOI":"10.1137\/19M125892X","volume":"41","author":"N Aliyev","year":"2020","unstructured":"Aliyev, N., Benner, P., Mengi, E., Voigt, M.: A subspace framework for ${{\\mathscr{H}}}_{\\infty }$-norm minimization. SIAM Matrix 41 (2), 928\u2013956 (2020). https:\/\/doi.org\/10.1137\/19M125892X","journal-title":"SIAM Matrix"},{"issue":"6","key":"9863_CR46","doi-asserted-by":"publisher","first-page":"2127","DOI":"10.1051\/m2an\/2017014","volume":"51","author":"L Feng","year":"2017","unstructured":"Feng, L., Antoulas, A.C., Benner, P.: Some a posteriori error bounds for reduced order modelling of (non-)parametrized linear systems. ESAIM: M2AN 51(6), 2127\u20132158 (2017). https:\/\/doi.org\/10.1051\/m2an\/2017014","journal-title":"ESAIM: M2AN"},{"issue":"2","key":"9863_CR47","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1080\/13873954.2018.1427116","volume":"24","author":"AC Antoulas","year":"2018","unstructured":"Antoulas, A.C., Benner, P., Feng, L.: Model reduction by iterative error system approximation. MCMDS 24(2), 103\u2013118 (2018). https:\/\/doi.org\/10.1080\/13873954.2018.1427116","journal-title":"MCMDS"},{"key":"9863_CR48","doi-asserted-by":"publisher","unstructured":"Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale systems in descriptor form. In: Benner, P, Mehrmann, V, Sorensen, D C (eds.) Dimension reduction of large-scale systems, Lect. Notes Comput. Sci. Eng., vol. 45, pp. 83\u2013115. Springer-Verlag, Berlin\/Heidelberg, Germany. https:\/\/doi.org\/10.1007\/3-540-27909-1_3 (2005)","DOI":"10.1007\/3-540-27909-1_3"},{"issue":"2","key":"9863_CR49","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1080\/13873954.2010.540822","volume":"17","author":"P Benner","year":"2011","unstructured":"Benner, P., Saak, J.: Efficient balancing-based MOR for large-scale second-order systems. MCMDS 17(2), 123\u2013143 (2011). https:\/\/doi.org\/10.1080\/13873954.2010.540822","journal-title":"MCMDS"},{"issue":"2","key":"9863_CR50","doi-asserted-by":"publisher","first-page":"328","DOI":"10.1137\/S0895479803423925","volume":"26","author":"K Gallivan","year":"2004","unstructured":"Gallivan, K., Vandendorpe, A., Van Dooren, P.: Model reduction of MIMO systems via tangential interpolation. SIAM Matrix 26(2), 328\u2013349 (2004). https:\/\/doi.org\/10.1137\/S0895479803423925","journal-title":"SIAM Matrix"},{"issue":"8","key":"9863_CR51","doi-asserted-by":"publisher","first-page":"1398","DOI":"10.1080\/00207179.2011.601761","volume":"84","author":"P Benner","year":"2011","unstructured":"Benner, P., Breiten, T., Damm, T.: Generalized tangential interpolation for model reduction of discrete-time MIMO bilinear systems. Int. Control 84(8), 1398\u20131407 (2011). https:\/\/doi.org\/10.1080\/00207179.2011.601761","journal-title":"Int. Control"},{"issue":"6","key":"9863_CR52","doi-asserted-by":"publisher","first-page":"1887","DOI":"10.1007\/s10444-018-9611-y","volume":"44","author":"AC Rodriguez","year":"2018","unstructured":"Rodriguez, A.C., Gugercin, S., Boggaard, J.: Interpolatory model reduction of parameterized bilinear dynamical systems. Adv. Comp. Math. 44(6), 1887\u20131916 (2018). https:\/\/doi.org\/10.1007\/s10444-018-9611-y","journal-title":"Adv. Comp. Math."}],"container-title":["Advances in Computational Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10444-021-09863-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10444-021-09863-w\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10444-021-09863-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T16:35:37Z","timestamp":1725035737000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10444-021-09863-w"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5,11]]},"references-count":52,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2021,6]]}},"alternative-id":["9863"],"URL":"https:\/\/doi.org\/10.1007\/s10444-021-09863-w","relation":{},"ISSN":["1019-7168","1572-9044"],"issn-type":[{"type":"print","value":"1019-7168"},{"type":"electronic","value":"1572-9044"}],"subject":[],"published":{"date-parts":[[2021,5,11]]},"assertion":[{"value":"14 July 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 March 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 May 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"43"}}