{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:16:51Z","timestamp":1728177411656},"reference-count":77,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T00:00:00Z","timestamp":1695254400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T00:00:00Z","timestamp":1695254400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"Science and Technology Plan of Suzhou City","award":["SKY2021038"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["82000540"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Youth Program of Suzhou Health Committee","award":["KJXW2019001"]},{"name":"Suzhou Clinical Center of Digestive Diseases","award":["Szlcyxzx202101"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Digit Imaging"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1007\/s10278-023-00844-7","type":"journal-article","created":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T19:01:27Z","timestamp":1695322887000},"page":"2578-2601","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Public Imaging Datasets of Gastrointestinal Endoscopy for Artificial Intelligence: a Review"],"prefix":"10.1007","volume":"36","author":[{"given":"Shiqi","family":"Zhu","sequence":"first","affiliation":[]},{"given":"Jingwen","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Lu","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Minyue","family":"Yin","sequence":"additional","affiliation":[]},{"given":"Jiaxi","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Chang","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Chunfang","family":"Xu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0544-9248","authenticated-orcid":false,"given":"Jinzhou","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,21]]},"reference":[{"key":"844_CR1","doi-asserted-by":"crossref","first-page":"1087","DOI":"10.1007\/s00535-015-1059-y","volume":"50","author":"S Nishiyama","year":"2015","unstructured":"Nishiyama S, et al.: Clinical usefulness of endocytoscopy in the remission stage of ulcerative colitis: a pilot study. J Gastroenterol 50:1087-1093, 2015","journal-title":"J Gastroenterol"},{"key":"844_CR2","doi-asserted-by":"publisher","first-page":"2541","DOI":"10.1056\/NEJMc1405329","volume":"370","author":"DA Corley","year":"2014","unstructured":"Corley DA, Levin TR, Doubeni CA: Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med 370:2541, 2014. https:\/\/doi.org\/10.1056\/NEJMc1405329","journal-title":"N Engl J Med"},{"key":"844_CR3","doi-asserted-by":"crossref","first-page":"1298","DOI":"10.1038\/ajg.2009.739","volume":"105","author":"JJ Telford","year":"2010","unstructured":"Telford JJ, Enns RA: Endoscopic missed rates of upper gastrointestinal cancers: parallels with colonoscopy. Am J Gastroenterol 105:1298-1300, 2010","journal-title":"Am J Gastroenterol"},{"key":"844_CR4","doi-asserted-by":"publisher","first-page":"417","DOI":"10.1038\/35013140","volume":"405","author":"G Iddan","year":"2000","unstructured":"Iddan G, Meron G, Glukhovsky A, Swain P: Wireless capsule endoscopy. Nature 405:417, 2000. https:\/\/doi.org\/10.1038\/35013140","journal-title":"Nature"},{"key":"844_CR5","doi-asserted-by":"publisher","unstructured":"McAlindon ME, Ching HL, Yung D, Sidhu R, Koulaouzidis A: Capsule endoscopy of the small bowel. Ann Transl Med 4:369, 2016. https:\/\/doi.org\/10.21037\/atm.2016.09.18","DOI":"10.21037\/atm.2016.09.18"},{"key":"844_CR6","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1038\/s41591-018-0307-0","volume":"25","author":"J He","year":"2019","unstructured":"He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K: The practical implementation of artificial intelligence technologies in medicine. Nat Med 25:30-36, 2019","journal-title":"Nat Med"},{"key":"844_CR7","doi-asserted-by":"crossref","first-page":"3166","DOI":"10.1016\/j.patcog.2012.03.002","volume":"45","author":"J Bernal","year":"2012","unstructured":"Bernal J, S\u00e1nchez J, Vilari\u00f1o F: Towards automatic polyp detection with a polyp appearance model. Pattern Recognition 45:3166-3182, 2012","journal-title":"Pattern Recognition"},{"key":"844_CR8","doi-asserted-by":"crossref","unstructured":"Bernal J, S\u00e1nchez FJ, Fern\u00e1ndez-Esparrach G, Gil D, Rodr\u00edguez C, Vilari\u00f1o F: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput Med Imaging Graph 43:99\u2013111, 2015","DOI":"10.1016\/j.compmedimag.2015.02.007"},{"key":"844_CR9","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1007\/s11548-013-0926-3","volume":"9","author":"J Silva","year":"2014","unstructured":"Silva J, Histace A, Romain O, Dray X, Granado B: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int J Comput Assist Radiol Surg 9:283-293, 2014","journal-title":"Int J Comput Assist Radiol Surg"},{"key":"844_CR10","doi-asserted-by":"crossref","first-page":"630","DOI":"10.1109\/TMI.2015.2487997","volume":"35","author":"N Tajbakhsh","year":"2016","unstructured":"Tajbakhsh N, Gurudu SR, Liang J: Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information. IEEE Trans Med Imaging 35:630-644, 2016","journal-title":"IEEE Trans Med Imaging"},{"key":"844_CR11","doi-asserted-by":"crossref","first-page":"2051","DOI":"10.1109\/TMI.2016.2547947","volume":"35","author":"P Mesejo","year":"2016","unstructured":"Mesejo P, et al.: Computer-Aided Classification of Gastrointestinal Lesions in Regular Colonoscopy. IEEE Trans Med Imaging 35:2051-2063, 2016","journal-title":"IEEE Trans Med Imaging"},{"key":"844_CR12","doi-asserted-by":"publisher","first-page":"4037190","DOI":"10.1155\/2017\/4037190","volume":"2017","author":"D V\u00e1zquez","year":"2017","unstructured":"V\u00e1zquez D, et al.: A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images. J Healthc Eng 2017:4037190, 2017. https:\/\/doi.org\/10.1155\/2017\/4037190","journal-title":"J Healthc Eng"},{"key":"844_CR13","doi-asserted-by":"publisher","unstructured":"Jha D, Smedsrud PH, Riegler MA et al.: Kvasir-seg: A segmented polyp dataset. In: International Conference on MultiMedia Modeling (MMM), pp 451\u2013462, 2020. https:\/\/doi.org\/10.1007\/978-3-030-37734-2_37","DOI":"10.1007\/978-3-030-37734-2_37"},{"key":"844_CR14","doi-asserted-by":"publisher","unstructured":"Figueiredo I, Pinto L, Figueiredo P, Tsai R: Unsupervised segmentation of colonic polyps in narrow-band imaging data based on manifold representation of images and Wasserstein distance. Biomedical Signal Processing and Control 53:101577, 2019. https:\/\/doi.org\/10.1016\/j.bspc.2019.101577","DOI":"10.1016\/j.bspc.2019.101577"},{"key":"844_CR15","doi-asserted-by":"crossref","first-page":"E209","DOI":"10.1055\/a-0808-4456","volume":"07","author":"P Figueiredo","year":"2019","unstructured":"Figueiredo P, Figueiredo I, Pinto L, Kumar S, Tsai R, Mamonov A: Polyp detection with computer-aided diagnosis in white light colonoscopy: comparison of three different methods. Endoscopy International Open 07:E209-E215, 2019","journal-title":"Endoscopy International Open"},{"key":"844_CR16","doi-asserted-by":"publisher","unstructured":"Patel K, et al.: A comparative study on polyp classification using convolutional neural networks. PLoS One 15:e0236452, 2020. https:\/\/doi.org\/10.1371\/journal.pone.0236452","DOI":"10.1371\/journal.pone.0236452"},{"key":"844_CR17","doi-asserted-by":"crossref","first-page":"960","DOI":"10.1016\/j.gie.2020.07.060","volume":"93","author":"M Misawa","year":"2021","unstructured":"Misawa M, et al.: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointest Endosc 93:960-967.e963, 2021","journal-title":"Gastrointest Endosc"},{"key":"844_CR18","doi-asserted-by":"publisher","first-page":"8501","DOI":"10.3390\/app10238501","volume":"10","author":"LF Sanchez-Peralta","year":"2020","unstructured":"Sanchez-Peralta LF, et al.: PICCOLO White-Light and Narrow-Band Imaging Colonoscopic Dataset: A Performance Comparative of Models and Datasets. Applied Sciences 10:8501, 2020. https:\/\/doi.org\/10.3390\/app10238501","journal-title":"Applied Sciences"},{"key":"844_CR19","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1186\/s12880-020-00482-3","volume":"20","author":"W Wang","year":"2020","unstructured":"Wang W, Tian J, Zhang C, Luo Y, Wang X, Li J: An improved deep learning approach and its applications on colonic polyp images detection. BMC Med Imaging 20:83, 2020. https:\/\/doi.org\/10.1186\/s12880-020-00482-3","journal-title":"BMC Med Imaging"},{"key":"844_CR20","doi-asserted-by":"publisher","unstructured":"Ma Y, Chen X, Cheng K, Li Y, Sun B: LDPolypVideo Benchmark: A Large-Scale Colonoscopy Video Dataset of Diverse Polyps. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), pp 387\u2013396, 2021. https:\/\/doi.org\/10.1007\/978-3-030-87240-3_37","DOI":"10.1007\/978-3-030-87240-3_37"},{"key":"844_CR21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11633-022-1322-7","volume":"19","author":"GP Ji","year":"2022","unstructured":"Ji GP, et al.: Video Polyp Segmentation: A Deep Learning Perspective. Machine Intelligence Research 19:1-19, 2022","journal-title":"Machine Intelligence Research"},{"key":"844_CR22","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1038\/s41597-023-01981-y","volume":"10","author":"S Ali","year":"2022","unstructured":"Ali S, et al.: A multi-centre polyp detection and segmentation dataset for generalisability assessment. Sci Data 10:75, 2022","journal-title":"Sci Data"},{"key":"844_CR23","doi-asserted-by":"crossref","first-page":"E477","DOI":"10.1055\/s-0043-105488","volume":"5","author":"A Koulaouzidis","year":"2017","unstructured":"Koulaouzidis A, et al.: KID Project: an internet-based digital video atlas of capsule endoscopy for research purposes. Endosc Int Open 5:E477-e483, 2017","journal-title":"Endosc Int Open"},{"key":"844_CR24","doi-asserted-by":"crossref","first-page":"E415","DOI":"10.1055\/a-1035-9088","volume":"8","author":"R Leenhardt","year":"2020","unstructured":"Leenhardt R, et al.: CAD-CAP: a 25,000-image database serving the development of artificial intelligence for capsule endoscopy. Endosc Int Open 8:E415-e420, 2020","journal-title":"Endosc Int Open"},{"key":"844_CR25","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1038\/s41597-021-00920-z","volume":"8","author":"PH Smedsrud","year":"2021","unstructured":"Smedsrud PH, et al.: Kvasir-Capsule, a video capsule endoscopy dataset. Sci Data 8:142, 2021. https:\/\/doi.org\/10.1038\/s41597-021-00920-z","journal-title":"Sci Data"},{"key":"844_CR26","doi-asserted-by":"publisher","unstructured":"Kong Z, et al.: Multi-Task Classification and Segmentation for Explicable Capsule Endoscopy Diagnostics. Front Mol Biosci 8:614277, 2021. https:\/\/doi.org\/10.3389\/fmolb.2021.614277","DOI":"10.3389\/fmolb.2021.614277"},{"key":"844_CR27","doi-asserted-by":"crossref","first-page":"E1136","DOI":"10.1055\/a-1468-3964","volume":"9","author":"A de Maissin","year":"2021","unstructured":"de Maissin A, et al.: Multi-expert annotation of Crohn's disease images of the small bowel for automatic detection using a convolutional recurrent attention neural network. Endosc Int Open 9:E1136-e1144, 2021","journal-title":"Endosc Int Open"},{"key":"844_CR28","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1007\/s11548-020-02127-w","volume":"15","author":"LC Garc\u00eda-Peraza-Herrera","year":"2020","unstructured":"Garc\u00eda-Peraza-Herrera LC, et al.: Intrapapillary capillary loop classification in magnification endoscopy: open dataset and baseline methodology. Int J Comput Assist Radiol Surg 15:651-659, 2020","journal-title":"Int J Comput Assist Radiol Surg"},{"key":"844_CR29","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1109\/JBHI.2022.3217944","volume":"27","author":"J Yang","year":"2023","unstructured":"Yang J, et al.: A benchmark dataset of endoscopic images and novel deep learning method to detect intestinal metaplasia and gastritis atrophy. IEEE Journal of Biomedical and Health Informatics 27:7-16, 2023","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"844_CR30","doi-asserted-by":"publisher","unstructured":"Pogorelov K, Randel KR, Griwodz C, Lange TD, Halvorsen P: KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection. In: the 8th Acm on Multimedia Systems Conference, pp 164\u2013169, 2017. https:\/\/doi.org\/10.1145\/3083187.3083212","DOI":"10.1145\/3083187.3083212"},{"key":"844_CR31","doi-asserted-by":"publisher","first-page":"283","DOI":"10.1038\/s41597-020-00622-y","volume":"7","author":"H Borgli","year":"2020","unstructured":"Borgli H, et al.: HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci Data 7:283, 2020. https:\/\/doi.org\/10.1038\/s41597-020-00622-y","journal-title":"Sci Data"},{"key":"844_CR32","doi-asserted-by":"publisher","first-page":"602","DOI":"10.1038\/s41597-022-01726-3","volume":"9","author":"A Charoen","year":"2022","unstructured":"Charoen A, et al.: Rhode Island gastroenterology video capsule endoscopy data set. Sci Data 9:602, 2022. https:\/\/doi.org\/10.1038\/s41597-022-01726-3","journal-title":"Sci Data"},{"key":"844_CR33","doi-asserted-by":"publisher","unstructured":"Montalbo F: Diagnosing gastrointestinal diseases from endoscopy images through a multi-fused CNN with auxiliary layers, alpha dropouts, and a fusion residual block. Biomedical signal processing and control 76:103683, 2022. https:\/\/doi.org\/10.1016\/j.bspc.2022.103683","DOI":"10.1016\/j.bspc.2022.103683"},{"key":"844_CR34","doi-asserted-by":"publisher","unstructured":"Cychnerski J, Dziubich T, Brzeski A: ERS: a novel comprehensive endoscopy image dataset for machine learning, compliant with the MST 3.0 specification. arXiv e-prints, 2022. https:\/\/doi.org\/10.48550\/arXiv.2201.08746","DOI":"10.48550\/arXiv.2201.08746"},{"key":"844_CR35","unstructured":"Gastrolab. Available at: http:\/\/www.gastrolab.net\/index.htm"},{"key":"844_CR36","unstructured":"WEO Clinical Endoscopy Atlas. Available at: http:\/\/www.endoatlas.org\/index.php"},{"key":"844_CR37","unstructured":"Atlas of Gastrointestinal Endoscopy. Available at: http:\/\/www.endoatlas.com\/atlas_1.html."},{"key":"844_CR38","unstructured":"EI salvador atlas. Available at: http:\/\/www.gastrointestinalatlas.com\/index.html."},{"key":"844_CR39","unstructured":"Gastrointestinal Image Analysis (GIANA) Angiodysplasia D&L challenge. [Online] https:\/\/endovissub2017-giana.grand-challenge.org\/home\/. Accessed 20 Nov 2017"},{"key":"844_CR40","doi-asserted-by":"publisher","unstructured":"Pogorelov K, et al.: Nerthus: A Bowel Preparation Quality Video Dataset. In: the 8th Acm on Multimedia Systems Conference, pp 170\u2013174, 2017. https:\/\/doi.org\/10.1145\/3083187.3083216","DOI":"10.1145\/3083187.3083216"},{"key":"844_CR41","doi-asserted-by":"publisher","unstructured":"Angermann Q, et al.: Towards Real-Time Polyp Detection in Colonoscopy Videos: Adapting Still Frame-Based Methodologies for Video Sequences Analysis. In: Computer Assisted and Robotic Endoscopy and Clinical Image-Based Procedures, pp 29\u201341, 2017. https:\/\/doi.org\/10.1007\/978-3-319-67543-5_3","DOI":"10.1007\/978-3-319-67543-5_3"},{"key":"844_CR42","doi-asserted-by":"publisher","unstructured":"Endoscopy Artefact Detection (EAD) Dataset. [Online] https:\/\/doi.org\/10.17632\/c7fjbxcgj9.2.\u00a0Accessed 30 Aug 2019","DOI":"10.17632\/c7fjbxcgj9.2"},{"key":"844_CR43","doi-asserted-by":"publisher","unstructured":"Cho M, Kim JH, Hong KS, Kim JS, Kong HJ, Kim S: Identification of cecum time-location in a colonoscopy video by deep learning analysis of colonoscope movement. PeerJ 7:e7256, 2019. https:\/\/doi.org\/10.7717\/peerj.7256","DOI":"10.7717\/peerj.7256"},{"key":"844_CR44","unstructured":"Endoscopy Disease Detection and Segmentation (EDD2020). [Online] https:\/\/edd2020.grand-challenge.org\/Home\/"},{"key":"844_CR45","doi-asserted-by":"publisher","unstructured":"Jha D, et al.: Kvasir-Instrument: Diagnostic and Therapeutic Tool Segmentation Dataset in Gastrointestinal Endoscopy. In: International Conference on MultiMedia Modeling (MMM), pp 218\u2013229, 2020. https:\/\/doi.org\/10.1007\/978-3-030-67835-7_19","DOI":"10.1007\/978-3-030-67835-7_19"},{"key":"844_CR46","doi-asserted-by":"publisher","unstructured":"Bae S-H, Yoon K-J: Polyp Detection via Imbalanced Learning and Discriminative Feature Learning. IEEE transactions on medical imaging 34, 2015. https:\/\/doi.org\/10.1109\/TMI.2015.2434398","DOI":"10.1109\/TMI.2015.2434398"},{"key":"844_CR47","doi-asserted-by":"publisher","unstructured":"Bernal J, Sanchez J, Vilari\u00f1o F: Impact of image preprocessing methods on polyp localization in colonoscopy frames. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference, pp 7350\u20137354, 2013. https:\/\/doi.org\/10.1109\/EMBC.2013.6611256","DOI":"10.1109\/EMBC.2013.6611256"},{"key":"844_CR48","first-page":"53","volume":"8198","author":"N Tajbakhsh","year":"2013","unstructured":"Tajbakhsh N, Gurudu S, Liang J: A Classification-Enhanced Vote Accumulation Scheme for Detecting Colonic Polyps. Computation and Clinical Applications 8198:53-62, 2013","journal-title":"Computation and Clinical Applications"},{"key":"844_CR49","doi-asserted-by":"crossref","first-page":"S3","DOI":"10.1016\/S0016-5107(03)02159-X","volume":"58","author":"HKH Inoue","year":"2003","unstructured":"Inoue H KH, et al: The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002. Gastrointest Endosc 58:S3-43, 2003","journal-title":"Gastrointest Endosc"},{"key":"844_CR50","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1053\/j.gastro.2016.12.032","volume":"152","author":"RA Enns","year":"2017","unstructured":"Enns RA, et al.: Clinical Practice Guidelines for the Use of Video Capsule Endoscopy. Gastroenterology 152:497-514, 2017","journal-title":"Gastroenterology"},{"key":"844_CR51","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1002\/bjs.9321","volume":"101","author":"M Hale","year":"2014","unstructured":"Hale M, McAlindon ME: Capsule endoscopy as a panenteric diagnostic tool. Br J Surg 101:148-149, 2014","journal-title":"Br J Surg"},{"key":"844_CR52","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1177\/2050640618821800","volume":"7","author":"M Everson","year":"2019","unstructured":"Everson M, et al.: Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: A proof-of-concept study. United European Gastroenterol J 7:297-306, 2019","journal-title":"United European Gastroenterol J"},{"key":"844_CR53","doi-asserted-by":"crossref","first-page":"1095","DOI":"10.1056\/NEJMoa1301969","volume":"369","author":"R Nishihara","year":"2013","unstructured":"Nishihara R, et al.: Long-term colorectal-cancer incidence and mortality after lower endoscopy. N Engl J Med 369:1095-1105, 2013","journal-title":"N Engl J Med"},{"key":"844_CR54","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1016\/j.gtc.2022.05.001","volume":"51","author":"DA Norwood","year":"2022","unstructured":"Norwood DA, Montalvan EE, Dominguez RL, Morgan DR: Gastric Cancer: Emerging Trends in Prevention, Diagnosis, and Treatment. Gastroenterol Clin North Am 51:501-518, 2022","journal-title":"Gastroenterol Clin North Am"},{"key":"844_CR55","unstructured":"Riegler M, et al.: Multimedia for Medicine: The Medico Task at MediaEval. In: MediaEval Benchmarking Initiative for Multimedia Evaluation 2017, pp 13\u201315, 2017"},{"key":"844_CR56","unstructured":"Pogorelov K, et al.: Medico Multimedia Task at MediaEval 2018. In: MediaEval 2018, pp 29\u201331, 2018"},{"key":"844_CR57","doi-asserted-by":"crossref","first-page":"6446","DOI":"10.1007\/s00464-021-08993-y","volume":"36","author":"YY Chang","year":"2022","unstructured":"Chang YY, et al.: Development and validation of a deep learning-based algorithm for colonoscopy quality assessment. Surg Endosc 36:6446-6455, 2022","journal-title":"Surg Endosc"},{"key":"844_CR58","doi-asserted-by":"crossref","first-page":"3336","DOI":"10.1109\/TIP.2019.2959254","volume":"29","author":"D Das","year":"2020","unstructured":"Das D, Lee CSG: A Two-Stage Approach to Few-Shot Learning for Image Recognition. IEEE Trans Image Process 29:3336-3350, 2020","journal-title":"IEEE Trans Image Process"},{"key":"844_CR59","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1016\/j.gie.2010.06.068","volume":"72","author":"AH Calderwood","year":"2010","unstructured":"Calderwood AH, Jacobson BC: Comprehensive validation of the Boston Bowel Preparation Scale. Gastrointest Endosc 72:686-692, 2010","journal-title":"Gastrointest Endosc"},{"key":"844_CR60","doi-asserted-by":"crossref","first-page":"620","DOI":"10.1016\/j.gie.2008.05.057","volume":"69","author":"EJ Lai","year":"2009","unstructured":"Lai EJ, Calderwood AH, Doros G, Fix OK, Jacobson BC: The Boston bowel preparation scale: a valid and reliable instrument for colonoscopy-oriented research. Gastrointest Endosc 69:620-625, 2009","journal-title":"Gastrointest Endosc"},{"key":"844_CR61","doi-asserted-by":"crossref","first-page":"594","DOI":"10.5946\/ce.2021.229","volume":"55","author":"CB Yang","year":"2022","unstructured":"Yang CB, Kim SH, Lim YJ: Preparation of image databases for artificial intelligence algorithm development in gastrointestinal endoscopy. Clin Endosc 55:594-604, 2022","journal-title":"Clin Endosc"},{"issue":"Suppl 2","key":"844_CR62","first-page":"20","volume":"34","author":"K Tanaka","year":"2022","unstructured":"Tanaka K: Japan Endoscopy Database project. Dig Endosc 34 Suppl 2:20-22, 2022","journal-title":"Japan Endoscopy Database project. Dig Endosc"},{"key":"844_CR63","doi-asserted-by":"crossref","first-page":"798","DOI":"10.1177\/2050640619841539","volume":"7","author":"TJ Lee","year":"2019","unstructured":"Lee TJ, et al.: Development of a national automated endoscopy database: The United Kingdom National Endoscopy Database (NED). United European Gastroenterol J 7:798-806, 2019","journal-title":"United European Gastroenterol J"},{"key":"844_CR64","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1111\/den.12964","volume":"30","author":"K Matsuda","year":"2018","unstructured":"Matsuda K, et al.: Design paper: Japan Endoscopy Database (JED): A prospective, large database project related to gastroenterological endoscopy in Japan. Dig Endosc 30:5-19, 2018","journal-title":"Dig Endosc"},{"key":"844_CR65","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1111\/den.12963","volume":"30","author":"S Kodashima","year":"2018","unstructured":"Kodashima S, et al.: First progress report on the Japan Endoscopy Database project. Dig Endosc 30:20-28, 2018","journal-title":"Dig Endosc"},{"key":"844_CR66","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1111\/den.13287","volume":"31","author":"I Oda","year":"2019","unstructured":"Oda I, Hoteya S, Fujishiro M: Status of Helicobacter pylori infection and gastric mucosal atrophy in patients with gastric cancer: Analysis based on the Japan Endoscopy Database. Dig Endosc 31:103, 2019. https:\/\/doi.org\/10.1111\/den.13287","journal-title":"Dig Endosc"},{"key":"844_CR67","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1111\/den.13980","volume":"34","author":"Y Saito","year":"2022","unstructured":"Saito Y, et al.: Current status of diagnostic and therapeutic colonoscopy in Japan: The Japan Endoscopic Database Project. Dig Endosc 34:144-152, 2022","journal-title":"Dig Endosc"},{"key":"844_CR68","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1136\/gutjnl-2020-322179","volume":"70","author":"MD Rutter","year":"2021","unstructured":"Rutter MD, Brookes M, Lee TJ, Rogers P, Sharp L: Impact of the COVID-19 pandemic on UK endoscopic activity and cancer detection: a National Endoscopy Database Analysis. Gut 70:537-543, 2021","journal-title":"Gut"},{"key":"844_CR69","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1002\/ueg2.12108","volume":"9","author":"A Hann","year":"2021","unstructured":"Hann A, Troya J, Fitting D: Current status and limitations of artificial intelligence in colonoscopy. United European Gastroenterol J 9:527-533, 2021","journal-title":"United European Gastroenterol J"},{"key":"844_CR70","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1016\/j.neucom.2020.02.123","volume":"423","author":"A Nogueira-Rodr\u00edguez","year":"2021","unstructured":"Nogueira-Rodr\u00edguez A, et al.: Deep Neural Networks approaches for detecting and classifying colorectal polyps. Neurocomputing 423:721-734, 2021","journal-title":"Neurocomputing"},{"key":"844_CR71","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1080\/17474124.2021.1840351","volume":"15","author":"S Chetcuti Zammit","year":"2021","unstructured":"Chetcuti Zammit S, Sidhu R: Capsule endoscopy - Recent developments and future directions. Expert Rev Gastroenterol Hepatol 15:127-137, 2021","journal-title":"Expert Rev Gastroenterol Hepatol"},{"key":"844_CR72","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.gie.2022.08.043","volume":"97","author":"B Houwen","year":"2023","unstructured":"Houwen B, Nass KJ, Vleugels JLA, Fockens P, Hazewinkel Y, Dekker E: Comprehensive review of publicly available colonoscopic imaging databases for artificial intelligence research: availability, accessibility, and usability. Gastrointest Endosc 97:184-199.e116, 2023","journal-title":"Gastrointest Endosc"},{"key":"844_CR73","doi-asserted-by":"publisher","unstructured":"Nogueira-Rodr\u00edguez A, Reboiro-Jato M, Glez-Pe\u00f1a D, L\u00f3pez-Fern\u00e1ndez H: Performance of Convolutional Neural Networks for Polyp Localization on Public Colonoscopy Image Datasets. Diagnostics (Basel) 12, 2022. https:\/\/doi.org\/10.3390\/diagnostics12040898","DOI":"10.3390\/diagnostics12040898"},{"key":"844_CR74","doi-asserted-by":"crossref","first-page":"1264","DOI":"10.1016\/j.ophtha.2018.01.034","volume":"125","author":"J Krause","year":"2018","unstructured":"Krause J, et al.: Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. Ophthalmology 125:1264-1272, 2018","journal-title":"Ophthalmology"},{"key":"844_CR75","doi-asserted-by":"crossref","first-page":"1645","DOI":"10.1016\/S1470-2045(19)30637-0","volume":"20","author":"H Luo","year":"2019","unstructured":"Luo H, et al.: Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol 20:1645-1654, 2019","journal-title":"Lancet Oncol"},{"key":"844_CR76","doi-asserted-by":"publisher","unstructured":"Zhou J, et al.: Application of artificial intelligence in gastrointestinal disease: a narrative review. Ann Transl Med 9:1188, 2021. https:\/\/doi.org\/10.21037\/atm-21-3001","DOI":"10.21037\/atm-21-3001"},{"key":"844_CR77","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1053\/j.gastro.2020.02.068","volume":"159","author":"M Arnold","year":"2020","unstructured":"Arnold M, et al.: Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology 159:335-349.e15, 2020","journal-title":"Gastroenterology"}],"container-title":["Journal of Digital Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-023-00844-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10278-023-00844-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-023-00844-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,18]],"date-time":"2023-12-18T21:53:20Z","timestamp":1702936400000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10278-023-00844-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9,21]]},"references-count":77,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2023,12]]}},"alternative-id":["844"],"URL":"https:\/\/doi.org\/10.1007\/s10278-023-00844-7","relation":{},"ISSN":["0897-1889","1618-727X"],"issn-type":[{"value":"0897-1889","type":"print"},{"value":"1618-727X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,9,21]]},"assertion":[{"value":"27 February 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 May 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 May 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 September 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing Interests"}}]}}