{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,28]],"date-time":"2024-08-28T18:30:48Z","timestamp":1724869848094},"reference-count":71,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2022,3,18]],"date-time":"2022-03-18T00:00:00Z","timestamp":1647561600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,3,18]],"date-time":"2022-03-18T00:00:00Z","timestamp":1647561600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Digit Imaging"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1007\/s10278-022-00613-y","type":"journal-article","created":{"date-parts":[[2022,3,18]],"date-time":"2022-03-18T17:02:43Z","timestamp":1647622963000},"page":"893-909","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":15,"title":["Hippocampus Segmentation Using U-Net Convolutional Network from Brain Magnetic Resonance Imaging (MRI)"],"prefix":"10.1007","volume":"35","author":[{"given":"Ruhul Amin","family":"Hazarika","sequence":"first","affiliation":[]},{"given":"Arnab Kumar","family":"Maji","sequence":"additional","affiliation":[]},{"given":"Raplang","family":"Syiem","sequence":"additional","affiliation":[]},{"given":"Samarendra Nath","family":"Sur","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3409-5189","authenticated-orcid":false,"given":"Debdatta","family":"Kandar","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,3,18]]},"reference":[{"issue":"4","key":"613_CR1","doi-asserted-by":"publisher","first-page":"239","DOI":"10.4103\/0972-2327.104323","volume":"15","author":"KS Anand","year":"2012","unstructured":"K.\u00a0S. Anand, V.\u00a0Dhikav, Hippocampus in health and disease: An overview, Annals of Indian Academy of Neurology 15\u00a0(4) (2012) 239.\u00a0https:\/\/doi.org\/10.4103\/0972-2327.104323.","journal-title":"Annals of Indian Academy of Neurology"},{"key":"613_CR2","doi-asserted-by":"publisher","first-page":"380","DOI":"10.1016\/j.neuropsychologia.2016.08.016","volume":"93","author":"A Ezzati","year":"2016","unstructured":"A.\u00a0Ezzati, M.\u00a0J. Katz, A.\u00a0R. Zammit, M.\u00a0L. Lipton, M.\u00a0E. Zimmerman, M.\u00a0J. Sliwinski, R.\u00a0B. Lipton, Differential association of left and right hippocampal volumes with verbal episodic and spatial memory in older adults, Neuropsychologia 93 (2016) 380\u2013385.\u00a0https:\/\/doi.org\/10.1016\/j.neuropsychologia.2016.08.016.","journal-title":"Neuropsychologia"},{"key":"613_CR3","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1016\/j.jprot.2016.11.023","volume":"154","author":"L Sadeghi","year":"2017","unstructured":"L.\u00a0Sadeghi, A.\u00a0A. Rizvanov, I.\u00a0I. Salafutdinov, B.\u00a0Dabirmanesh, M.\u00a0Sayyah, Y.\u00a0Fathollahi, K.\u00a0Khajeh, Hippocampal asymmetry: Differences in the left and right hippocampus proteome in the rat model of temporal lobe epilepsy, Journal of proteomics 154 (2017) 22\u201329.\u00a0https:\/\/doi.org\/10.1016\/j.jprot.2016.11.023.","journal-title":"Journal of proteomics"},{"issue":"4","key":"613_CR4","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1016\/s0896-6273(02)00830-9","volume":"35","author":"N Burgess","year":"2002","unstructured":"N.\u00a0Burgess, E.\u00a0A. Maguire, J.\u00a0O\u2019Keefe, The human hippocampus and spatial and episodic memory, Neuron 35\u00a0(4) (2002) 625\u2013641.\u00a0https:\/\/doi.org\/10.1016\/s0896-6273(02)00830-9.","journal-title":"Neuron"},{"key":"613_CR5","doi-asserted-by":"publisher","unstructured":"A.\u00a0Vijayakumar, A.\u00a0Vijayakumar, Comparison of hippocampal volume in dementia subtypes, ISRN radiology 2013 (2012).\u00a0https:\/\/doi.org\/10.5402\/2013\/174524.","DOI":"10.5402\/2013\/174524"},{"issue":"1","key":"613_CR6","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1212\/wnl.42.1.183","volume":"42","author":"CR Jack","year":"1992","unstructured":"C.\u00a0R. Jack, R.\u00a0C. Petersen, P.\u00a0C. O\u2019Brien, E.\u00a0G. Tangalos, MR-based hippocampal volumetry in the diagnosis of Alzheimer\u2019s disease, Neurology 42\u00a0(1) (1992) 183\u2013183.\u00a0https:\/\/doi.org\/10.1212\/wnl.42.1.183.","journal-title":"Neurology"},{"issue":"1","key":"613_CR7","doi-asserted-by":"publisher","first-page":"194","DOI":"10.1148\/radiol.2481070876","volume":"248","author":"O Colliot","year":"2008","unstructured":"O.\u00a0Colliot, G.\u00a0Ch\u00e9telat, M.\u00a0Chupin, B.\u00a0Desgranges, B.\u00a0Magnin, H.\u00a0Benali, B.\u00a0Dubois, L.\u00a0Garnero, F.\u00a0Eustache, S.\u00a0Leh\u00e9ricy, Discrimination between alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus, Radiology 248\u00a0(1) (2008) 194\u2013201.\u00a0https:\/\/doi.org\/10.1148\/radiol.2481070876.","journal-title":"Radiology"},{"key":"613_CR8","doi-asserted-by":"publisher","first-page":"58503","DOI":"10.1109\/ACCESS.2021.3072559","volume":"9","author":"RA Hazarika","year":"2021","unstructured":"R.\u00a0A. Hazarika, A.\u00a0K. Maji, S.\u00a0N. Sur, B.\u00a0S. Paul, D.\u00a0Kandar, A survey on classification algorithms of brain images in Alzheimer\u2019s disease based on feature extraction techniques, IEEE Access 9 (2021) 58503\u201358536.\u00a0https:\/\/doi.org\/10.1109\/ACCESS.2021.3072559.","journal-title":"IEEE Access"},{"key":"613_CR9","doi-asserted-by":"publisher","unstructured":"R.\u00a0A. Hazarika, A.\u00a0K. Maji, D.\u00a0Kandar, P.\u00a0Chakrabarti, T.\u00a0Chakrabarti, K.\u00a0J. Rao, J.\u00a0Carvalho, B.\u00a0Kateb, M.\u00a0Nami, An evaluation on changes in hippocampus size for cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer\u2019s disease (AD) patients using fuzzy membership function (2021).\u00a0https:\/\/doi.org\/10.31219\/osf.io\/wujfn.","DOI":"10.31219\/osf.io\/wujfn"},{"issue":"10","key":"613_CR10","doi-asserted-by":"publisher","first-page":"2809","DOI":"10.3390\/s20102809","volume":"20","author":"MF Ijaz","year":"2020","unstructured":"M.\u00a0F. Ijaz, M.\u00a0Attique, Y.\u00a0Son, Data-driven cervical cancer prediction model with outlier detection and over-sampling methods, Sensors 20\u00a0(10) (2020) 2809.\u00a0https:\/\/doi.org\/10.3390\/s20102809.","journal-title":"Sensors"},{"issue":"11","key":"613_CR11","doi-asserted-by":"publisher","first-page":"862","DOI":"10.1016\/S1474-4422(17)30343-5","volume":"16","author":"G Halliday","year":"2017","unstructured":"G.\u00a0Halliday, Pathology and hippocampal atrophy in Alzheimer\u2019s disease, The Lancet Neurology 16\u00a0(11) (2017) 862\u2013864.\u00a0https:\/\/doi.org\/10.1016\/S1474-4422(17)30343-5.","journal-title":"The Lancet Neurology"},{"key":"613_CR12","doi-asserted-by":"publisher","unstructured":"Y.\u00a0Chen, B.\u00a0Shi, Z.\u00a0Wang, P.\u00a0Zhang, C.\u00a0D. Smith, J.\u00a0Liu, Hippocampus segmentation through multi-view ensemble convnets, in: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), IEEE, 2017, pp. 192\u2013196.\u00a0https:\/\/doi.org\/10.1109\/ISBI.2017.7950499.","DOI":"10.1109\/ISBI.2017.7950499"},{"issue":"1","key":"613_CR13","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12938-019-0623-8","volume":"18","author":"Y Shi","year":"2019","unstructured":"Y.\u00a0Shi, K.\u00a0Cheng, Z.\u00a0Liu, Hippocampal subfields segmentation in brain MR images using generative adversarial networks, Biomedical engineering online 18\u00a0(1) (2019) 1\u201312.\u00a0https:\/\/doi.org\/10.1186\/s12938-019-0623-8.","journal-title":"Biomedical engineering online"},{"key":"613_CR14","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1016\/j.compbiomed.2018.02.005","volume":"95","author":"V Dill","year":"2018","unstructured":"V.\u00a0Dill, P.\u00a0C. Klein, A.\u00a0R. Franco, M.\u00a0S. Pinho, Atlas selection for hippocampus segmentation: Relevance evaluation of three meta-information parameters, Computers in biology and medicine 95 (2018) 90\u201398.\u00a0https:\/\/doi.org\/10.1016\/j.compbiomed.2018.02.005.","journal-title":"Computers in biology and medicine"},{"key":"613_CR15","doi-asserted-by":"publisher","unstructured":"F.\u00a0Bartel, H.\u00a0Vrenken, M.\u00a0van Herk, M.\u00a0de\u00a0Ruiter, J.\u00a0Belderbos, J.\u00a0Hulshof, J.\u00a0C. de\u00a0Munck, Fast segmentation through surface fairing (FASTSURF): A novel semi-automatic hippocampus segmentation method, PloS one 14\u00a0(1) (2019).\u00a0https:\/\/doi.org\/10.1371\/journal.pone.0210641.","DOI":"10.1371\/journal.pone.0210641"},{"issue":"1","key":"613_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/srep45501","volume":"7","author":"S Pang","year":"2017","unstructured":"S.\u00a0Pang, J.\u00a0Jiang, Z.\u00a0Lu, X.\u00a0Li, W.\u00a0Yang, M.\u00a0Huang, Y.\u00a0Zhang, Y.\u00a0Feng, W.\u00a0Huang, Q.\u00a0Feng, Hippocampus segmentation based on local linear mapping, Scientific reports 7\u00a0(1) (2017) 1\u201311.\u00a0https:\/\/doi.org\/10.1038\/srep45501.","journal-title":"Scientific reports"},{"key":"613_CR17","doi-asserted-by":"publisher","unstructured":"H.\u00a0Seo, M.\u00a0B. Khuzani, V.\u00a0Vasudevan, C.\u00a0Huang, H.\u00a0Ren, R.\u00a0Xiao, X.\u00a0Jia, L.\u00a0Xing, Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications, arXiv preprint arXiv:1911.02521 (2019).\u00a0https:\/\/doi.org\/10.1002\/mp.13649.","DOI":"10.1002\/mp.13649"},{"key":"613_CR18","unstructured":"Alzheimer\u2019s disease neuroimaging initiative, [Last accessed on 27\/02\/2020]. http:\/\/adni.loni.usc.edu\/data-samples\/access-data\/"},{"key":"613_CR19","doi-asserted-by":"crossref","unstructured":"B.\u00a0Murugesan, V.\u00a0Ravichandran, K.\u00a0Ram, S.\u00a0Preejith, J.\u00a0Joseph, S.\u00a0M. Shankaranarayana, M.\u00a0Sivaprakasam, Ecgnet: Deep network for arrhythmia classification, in: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), IEEE, 2018, pp. 1\u20136.","DOI":"10.1109\/MeMeA.2018.8438739"},{"issue":"6","key":"613_CR20","doi-asserted-by":"publisher","first-page":"690","DOI":"10.3390\/math9060690","volume":"9","author":"R Panigrahi","year":"2021","unstructured":"R.\u00a0Panigrahi, S.\u00a0Borah, A.\u00a0K. Bhoi, M.\u00a0F. Ijaz, M.\u00a0Pramanik, R.\u00a0H. Jhaveri, C.\u00a0L. Chowdhary, Performance assessment of supervised classifiers for designing intrusion detection systems: A comprehensive review and recommendations for future research, Mathematics 9\u00a0(6) (2021) 690.\u00a0https:\/\/doi.org\/10.3390\/math9060690.","journal-title":"Mathematics"},{"issue":"7","key":"613_CR21","doi-asserted-by":"publisher","first-page":"751","DOI":"10.3390\/math9070751","volume":"9","author":"R Panigrahi","year":"2021","unstructured":"R.\u00a0Panigrahi, S.\u00a0Borah, A.\u00a0K. Bhoi, M.\u00a0F. Ijaz, M.\u00a0Pramanik, Y.\u00a0Kumar, R.\u00a0H. Jhaveri, A consolidated decision tree-based intrusion detection system for binary and multiclass imbalanced datasets, Mathematics 9\u00a0(7) (2021) 751.\u00a0https:\/\/doi.org\/10.3390\/math9070751.","journal-title":"Mathematics"},{"issue":"7","key":"613_CR22","doi-asserted-by":"publisher","first-page":"2183","DOI":"10.3390\/s18072183","volume":"18","author":"G Alfian","year":"2018","unstructured":"G.\u00a0Alfian, M.\u00a0Syafrudin, M.\u00a0F. Ijaz, M.\u00a0A. Syaekhoni, N.\u00a0L. Fitriyani, J.\u00a0Rhee, A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing, Sensors 18\u00a0(7) (2018) 2183.\u00a0https:\/\/doi.org\/10.3390\/s18072183.","journal-title":"Sensors"},{"issue":"8","key":"613_CR23","doi-asserted-by":"publisher","first-page":"1325","DOI":"10.3390\/app8081325","volume":"8","author":"MF Ijaz","year":"2018","unstructured":"M.\u00a0F. Ijaz, G.\u00a0Alfian, M.\u00a0Syafrudin, J.\u00a0Rhee, Hybrid prediction model for type 2 diabetes and hypertension using DBSCAN-based outlier detection, synthetic minority over sampling technique (SMOTE), and random forest, Applied Sciences 8\u00a0(8) (2018) 1325.\u00a0https:\/\/doi.org\/10.3390\/app8081325.","journal-title":"Applied Sciences"},{"key":"613_CR24","doi-asserted-by":"crossref","unstructured":"J.\u00a0F. Pagel, P.\u00a0Kirshtein, Machine dreaming and consciousness, Academic Press, 2017.","DOI":"10.1016\/B978-0-12-803720-1.00013-X"},{"key":"613_CR25","doi-asserted-by":"publisher","DOI":"10.1016\/B978-0-12-803581-8.03476-7","author":"S Udpa","year":"2001","unstructured":"S.\u00a0Udpa, L.\u00a0Udpa, NDT techniques: Signal and image processing (2001).\u00a0https:\/\/doi.org\/10.1016\/B978-0-12-803581-8.03476-7.","journal-title":"NDT techniques: Signal and image processing"},{"key":"613_CR26","unstructured":"V.\u00a0V. Raghavan, V.\u00a0N. Gudivada, V.\u00a0Govindaraju, C.\u00a0R. Rao, Cognitive computing: Theory and applications, Elsevier, 2016."},{"issue":"2","key":"613_CR27","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1016\/j.zemedi.2018.11.002","volume":"29","author":"AS Lundervold","year":"2019","unstructured":"A.\u00a0S. Lundervold, A.\u00a0Lundervold, An overview of deep learning in medical imaging focusing on MRI, Zeitschrift f\u00fcr Medizinische Physik 29\u00a0(2) (2019) 102\u2013127.","journal-title":"Zeitschrift f\u00fcr Medizinische Physik"},{"issue":"8","key":"613_CR28","doi-asserted-by":"publisher","first-page":"2852","DOI":"10.3390\/s21082852","volume":"21","author":"PN Srinivasu","year":"2021","unstructured":"P.\u00a0N. Srinivasu, J.\u00a0G. SivaSai, M.\u00a0F. Ijaz, A.\u00a0K. Bhoi, W.\u00a0Kim, J.\u00a0J. Kang, Classification of skin disease using deep learning neural networks with mobilenet v2 and LSTM, Sensors 21\u00a0(8) (2021) 2852.\u00a0https:\/\/doi.org\/10.3390\/s21082852.","journal-title":"Sensors"},{"key":"613_CR29","doi-asserted-by":"publisher","unstructured":"O.\u00a0Ronneberger, P.\u00a0Fischer, T.\u00a0Brox, U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical image computing and computer-assisted intervention, Springer, 2015, pp. 234\u2013241.\u00a0https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"613_CR30","unstructured":"Isbi 2014 challenge. https:\/\/cs.adelaide.edu.au\/~carneiro\/isbi14 challenge\/. Accessed 03 January 2022"},{"key":"613_CR31","unstructured":"Isbi 2015 challenge. www-o.ntust.edu.tw\/~cweiwang\/ISBI2015\/challenge2\/index.html. Accessed 03 January 2022"},{"key":"613_CR32","unstructured":"Isbi-2015-challenge. https:\/\/cs.adelaide.edu.au\/~zhi\/isbi15 challenge\/index.html. Accessed 03 January 2022"},{"issue":"2","key":"613_CR33","doi-asserted-by":"publisher","first-page":"20508","DOI":"10.2352\/J.ImagingSci.Technol.2020.64.2.020508","volume":"64","author":"G Du","year":"2020","unstructured":"G.\u00a0Du, X.\u00a0Cao, J.\u00a0Liang, X.\u00a0Chen, Y.\u00a0Zhan, Medical image segmentation based on u-net: A review, Journal of Imaging Science and Technology 64\u00a0(2) (2020) 20508\u20131.\u00a0https:\/\/doi.org\/10.2352\/J.ImagingSci.Technol.2020.64.2.020508.","journal-title":"Journal of Imaging Science and Technology"},{"key":"613_CR34","doi-asserted-by":"publisher","unstructured":"A.\u00a0H\u00e4nsch, M.\u00a0Schwier, T.\u00a0Gass, T.\u00a0Morgas, B.\u00a0Haas, V.\u00a0Dicken, H.\u00a0Meine, J.\u00a0Klein, H.\u00a0K. Hahn, Evaluation of deep learning methods for parotid gland segmentation from CT images, Journal of Medical Imaging 6\u00a0(1) (2018) 011005.\u00a0https:\/\/doi.org\/10.1117\/1.JMI.6.1.011005.","DOI":"10.1117\/1.JMI.6.1.011005"},{"key":"613_CR35","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1016\/j.cmpb.2017.02.013","volume":"143","author":"L Huang","year":"2017","unstructured":"L.\u00a0Huang, W.\u00a0Xia, B.\u00a0Zhang, B.\u00a0Qiu, X.\u00a0Gao, MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images, Computer methods and programs in biomedicine 143 (2017) 67\u201374.\u00a0https:\/\/doi.org\/10.1016\/j.cmpb.2017.02.013.","journal-title":"Computer methods and programs in biomedicine"},{"issue":"9","key":"613_CR36","doi-asserted-by":"publisher","first-page":"2137","DOI":"10.1109\/TMI.2018.2820742","volume":"37","author":"Q Zheng","year":"2018","unstructured":"Q.\u00a0Zheng, H.\u00a0Delingette, N.\u00a0Duchateau, N.\u00a0Ayache, 3-d consistent and robust segmentation of cardiac images by deep learning with spatial propagation, IEEE transactions on medical imaging 37\u00a0(9) (2018) 2137\u20132148.\u00a0https:\/\/doi.org\/10.1109\/TMI.2018.2820742.","journal-title":"IEEE transactions on medical imaging"},{"issue":"1","key":"613_CR37","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1148\/radiol.2018180513","volume":"290","author":"Q Tao","year":"2019","unstructured":"Q.\u00a0Tao, W.\u00a0Yan, Y.\u00a0Wang, E.\u00a0H. Paiman, D.\u00a0P. Shamonin, P.\u00a0Garg, S.\u00a0Plein, L.\u00a0Huang, L.\u00a0Xia, M.\u00a0Sramko, et\u00a0al., Deep learning\u2013based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multicenter study, Radiology 290\u00a0(1) (2019) 81\u201388.\u00a0https:\/\/doi.org\/10.1148\/radiol.2018180513.","journal-title":"Radiology"},{"issue":"6","key":"613_CR38","doi-asserted-by":"publisher","first-page":"2560","DOI":"10.1002\/mp.12918","volume":"45","author":"J Wang","year":"2018","unstructured":"J.\u00a0Wang, J.\u00a0Lu, G.\u00a0Qin, L.\u00a0Shen, Y.\u00a0Sun, H.\u00a0Ying, Z.\u00a0Zhang, W.\u00a0Hu, A deep learning-based autosegmentation of rectal tumors in MR images, Medical physics 45\u00a0(6) (2018) 2560\u20132564.\u00a0https:\/\/doi.org\/10.1002\/mp.12918.","journal-title":"Medical physics"},{"issue":"2","key":"613_CR39","doi-asserted-by":"publisher","first-page":"400","DOI":"10.1002\/jmri.26246","volume":"49","author":"V Pedoia","year":"2019","unstructured":"V.\u00a0Pedoia, B.\u00a0Norman, S.\u00a0N. Mehany, M.\u00a0D. Bucknor, T.\u00a0M. Link, S.\u00a0Majumdar, 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects, Journal of Magnetic Resonance Imaging 49\u00a0(2) (2019) 400\u2013410.\u00a0https:\/\/doi.org\/10.1002\/jmri.26246.","journal-title":"Journal of Magnetic Resonance Imaging"},{"issue":"1","key":"613_CR40","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1148\/radiol.2018172322","volume":"288","author":"B Norman","year":"2018","unstructured":"B.\u00a0Norman, V.\u00a0Pedoia, S.\u00a0Majumdar, Use of 2D U-NET convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry, Radiology 288\u00a0(1) (2018) 177\u2013185.\u00a0https:\/\/doi.org\/10.1148\/radiol.2018172322.","journal-title":"Radiology"},{"key":"613_CR41","doi-asserted-by":"publisher","unstructured":"G.\u00a0Zeng, G.\u00a0Zheng, Deep learning-based automatic segmentation of the proximal femur from MR images, in: Intelligent Orthopaedics, Springer, 2018, pp. 73\u201379.\u00a0https:\/\/doi.org\/10.1007\/978-981-13-1396-7_6.","DOI":"10.1007\/978-981-13-1396-7_6"},{"key":"613_CR42","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1016\/j.compbiomed.2018.08.018","volume":"101","author":"Q Huang","year":"2018","unstructured":"Q.\u00a0Huang, J.\u00a0Sun, H.\u00a0Ding, X.\u00a0Wang, G.\u00a0Wang, Robust liver vessel extraction using 3D U-Net with variant dice loss function, Computers in biology and medicine 101 (2018) 153\u2013162.\u00a0https:\/\/doi.org\/10.1016\/j.compbiomed.2018.08.018.","journal-title":"Computers in biology and medicine"},{"key":"613_CR43","doi-asserted-by":"publisher","unstructured":"V.\u00a0Kumar, J.\u00a0M. Webb, A.\u00a0Gregory, M.\u00a0Denis, D.\u00a0D. Meixner, M.\u00a0Bayat, D.\u00a0H. Whaley, M.\u00a0Fatemi, A.\u00a0Alizad, Automated and real-time segmentation of suspicious breast masses using convolutional neural network, PloS one 13\u00a0(5) (2018) e0195816.\u00a0https:\/\/doi.org\/10.1371\/journal.pone.0195816.","DOI":"10.1371\/journal.pone.0195816"},{"issue":"7","key":"613_CR44","doi-asserted-by":"publisher","first-page":"3244","DOI":"10.1364\/BOE.9.003244","volume":"9","author":"SK Devalla","year":"2018","unstructured":"S.\u00a0K. Devalla, P.\u00a0K. Renukanand, B.\u00a0K. Sreedhar, G.\u00a0Subramanian, L.\u00a0Zhang, S.\u00a0Perera, J.-M. Mari, K.\u00a0S. Chin, T.\u00a0A. Tun, N.\u00a0G. Strouthidis, et\u00a0al., Drunet: a dilated-residual u-net deep learning network to segment optic nerve head tissues in optical coherence tomography images, Biomedical optics express 9\u00a0(7) (2018) 3244\u20133265.\u00a0https:\/\/doi.org\/10.1364\/BOE.9.003244.","journal-title":"Biomedical optics express"},{"issue":"7","key":"613_CR45","doi-asserted-by":"publisher","first-page":"3292","DOI":"10.1364\/BOE.8.003292","volume":"8","author":"FG Venhuizen","year":"2017","unstructured":"F.\u00a0G. Venhuizen, B.\u00a0van Ginneken, B.\u00a0Liefers, M.\u00a0J. van Grinsven, S.\u00a0Fauser, C.\u00a0Hoyng, T.\u00a0Theelen, C.\u00a0I. S\u00e1nchez, Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks, Biomedical optics express 8\u00a0(7) (2017) 3292\u20133316.\u00a0https:\/\/doi.org\/10.1364\/BOE.8.003292.","journal-title":"Biomedical optics express"},{"key":"613_CR46","doi-asserted-by":"publisher","unstructured":"K.\u00a0Somasundaram, T.\u00a0Genish, An atlas based approach to segment the hippocampus from MRI of human head scans for the diagnosis of Alzheimers disease, International Journal of Computational Intelligence and Informatics 5\u00a0(1) (2015).\u00a0https:\/\/doi.org\/10.1016\/j.zemedi.2018.11.002.","DOI":"10.1016\/j.zemedi.2018.11.002"},{"key":"613_CR47","doi-asserted-by":"crossref","unstructured":"X.\u00a0Tang, S.\u00a0Mori, T.\u00a0Ratnanather, M.\u00a0I. Miller, Segmentation of hippocampus and amygdala using multi-channel landmark large deformation diffeomorphic metric mapping, in: 2012 38th Annual Northeast Bioengineering Conference (NEBEC), IEEE, 2012, pp. 414\u2013415.","DOI":"10.1109\/NEBC.2012.6207140"},{"issue":"6","key":"613_CR48","doi-asserted-by":"publisher","first-page":"2674","DOI":"10.1109\/NEBC.2012.6207140","volume":"35","author":"Y Hao","year":"2014","unstructured":"Y.\u00a0Hao, T.\u00a0Wang, X.\u00a0Zhang, Y.\u00a0Duan, C.\u00a0Yu, T.\u00a0Jiang, Y.\u00a0Fan, A.\u00a0D.\u00a0N. Initiative, Local label learning (III) for subcortical structure segmentation: application to hippocampus segmentation, Human brain mapping 35\u00a0(6) (2014) 2674\u20132697.\u00a0https:\/\/doi.org\/10.1109\/NEBC.2012.6207140.","journal-title":"Human brain mapping"},{"issue":"1","key":"613_CR49","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1007\/s12021-016-9312-y","volume":"15","author":"H Zhu","year":"2017","unstructured":"H.\u00a0Zhu, H.\u00a0Cheng, X.\u00a0Yang, Y.\u00a0Fan, A.\u00a0D.\u00a0N. Initiative, et\u00a0al., Metric learning for multi-atlas based segmentation of hippocampus, Neuroinformatics 15\u00a0(1) (2017) 41\u201350.\u00a0https:\/\/doi.org\/10.1007\/s12021-016-9312-y.","journal-title":"Neuroinformatics"},{"key":"613_CR50","doi-asserted-by":"publisher","unstructured":"D.\u00a0Zarpalas, P.\u00a0Gkontra, P.\u00a0Daras, N.\u00a0Maglaveras, Hippocampus segmentation through gradient based reliability maps for local blending of ACM energy terms, in: 2013 IEEE 10th International Symposium on Biomedical Imaging, IEEE, 2013, pp. 53\u201356.\u00a0https:\/\/doi.org\/10.1109\/ISBI.2013.6556410.","DOI":"10.1109\/ISBI.2013.6556410"},{"key":"613_CR51","doi-asserted-by":"publisher","unstructured":"J.\u00a0V. Manj\u00f3n, P.\u00a0Coup\u00e9, Hippocampus subfield segmentation using a patch-based boosted ensemble of autocontext neural networks, in: International Workshop on Patch-based Techniques in Medical Imaging, Springer, 2017, pp. 29\u201336.\u00a0https:\/\/doi.org\/10.1007\/978-3-319-67434-6_4.","DOI":"10.1007\/978-3-319-67434-6_4"},{"issue":"2","key":"613_CR52","doi-asserted-by":"publisher","first-page":"940","DOI":"10.1016\/j.neuroimage.2010.09.018","volume":"54","author":"P Coup\u00e9","year":"2011","unstructured":"P.\u00a0Coup\u00e9, J.\u00a0V. Manj\u00f3n, V.\u00a0Fonov, J.\u00a0Pruessner, M.\u00a0Robles, D.\u00a0L. Collins, Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation, NeuroImage 54\u00a0(2) (2011) 940\u2013954.\u00a0https:\/\/doi.org\/10.1016\/j.neuroimage.2010.09.018.","journal-title":"NeuroImage"},{"issue":"4","key":"613_CR53","doi-asserted-by":"publisher","first-page":"708","DOI":"10.1016\/j.neuroimage.2008.07.058","volume":"43","author":"F van der Lijn","year":"2008","unstructured":"F.\u00a0van\u00a0der Lijn, T.\u00a0Den\u00a0Heijer, M.\u00a0M. Breteler, W.\u00a0J. Niessen, Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts, Neuroimage 43\u00a0(4) (2008) 708\u2013720.\u00a0https:\/\/doi.org\/10.1016\/j.neuroimage.2008.07.058.","journal-title":"Neuroimage"},{"key":"613_CR54","doi-asserted-by":"publisher","unstructured":"M.\u00a0Goubran, E.\u00a0E. Ntiri, H.\u00a0Akhavein, M.\u00a0Holmes, S.\u00a0Nestor, J.\u00a0Ramirez, S.\u00a0Adamo, M.\u00a0Ozzoude, C.\u00a0Scott, F.\u00a0Gao, et\u00a0al., Hippocampal segmentation for brains with extensive atrophy using three-dimensional convolutional neural networks, Tech. rep., Wiley Online Library (2020).\u00a0https:\/\/doi.org\/10.1016\/j.neuroimage.2008.07.058.","DOI":"10.1016\/j.neuroimage.2008.07.058"},{"key":"613_CR55","doi-asserted-by":"publisher","unstructured":"A.\u00a0H\u00e4nsch, J.\u00a0H. Moltz, B.\u00a0Geisler, C.\u00a0Engel, J.\u00a0Klein, A.\u00a0Genghi, J.\u00a0Schreier, T.\u00a0Morgas, B.\u00a0Haas, Hippocampus segmentation in CT using deep learning: impact of MR versus CT-based training contours, Journal of Medical Imaging 7\u00a0(6) (2020) 064001.\u00a0https:\/\/doi.org\/10.1117\/1.JMI.7.6.064001.","DOI":"10.1117\/1.JMI.7.6.064001"},{"issue":"4","key":"613_CR56","doi-asserted-by":"publisher","first-page":"563","DOI":"10.1007\/s12021-019-09417-y","volume":"17","author":"D Ataloglou","year":"2019","unstructured":"D.\u00a0Ataloglou, A.\u00a0Dimou, D.\u00a0Zarpalas, P.\u00a0Daras, Fast and precise hippocampus segmentation through deep convolutional neural network ensembles and transfer learning, Neuroinformatics 17\u00a0(4) (2019) 563\u2013582.\u00a0https:\/\/doi.org\/10.1007\/s12021-019-09417-y.","journal-title":"Neuroinformatics"},{"issue":"4","key":"613_CR57","doi-asserted-by":"publisher","first-page":"400","DOI":"10.1080\/21681163.2019.1706054","volume":"8","author":"N Safavian","year":"2020","unstructured":"N.\u00a0Safavian, S.\u00a0A.\u00a0H. Batouli, M.\u00a0A. Oghabian, An automatic level set method for hippocampus segmentation in MR images, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 8\u00a0(4) (2020) 400\u2013410.\u00a0https:\/\/doi.org\/10.1080\/21681163.2019.1706054.","journal-title":"Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization"},{"issue":"6","key":"613_CR58","doi-asserted-by":"publisher","first-page":"579","DOI":"10.1002\/hipo.20626","volume":"19","author":"M Chupin","year":"2009","unstructured":"M.\u00a0Chupin, E.\u00a0G\u00e9rardin, R.\u00a0Cuingnet, C.\u00a0Boutet, L.\u00a0Lemieux, S.\u00a0Leh\u00e9ricy, H.\u00a0Benali, L.\u00a0Garnero, O.\u00a0Colliot, Fully automatic hippocampus segmentation and classification in Alzheimer\u2019s disease and mild cognitive impairment applied on data from ADNI, Hippocampus 19\u00a0(6) (2009) 579\u2013587.\u00a0https:\/\/doi.org\/10.1002\/hipo.20626.","journal-title":"Hippocampus"},{"issue":"supplement 1","key":"613_CR59","first-page":"1322","volume":"55","author":"R Folks","year":"2014","unstructured":"R.\u00a0Folks, Using the python programming language for image processing in nuclear medicine, Journal of Nuclear Medicine 55\u00a0(supplement 1) (2014) 1322\u20131322.","journal-title":"Journal of Nuclear Medicine"},{"key":"613_CR60","unstructured":"S.\u00a0G. Virupakshappa, R.\u00a0Sequeira, A.\u00a0Rastogi, N.\u00a0Jain, et\u00a0al., Essence of python programming language in medical image analysis: Enhancing workplace productivity, European Congress of Radiology 2018, 2018."},{"key":"613_CR61","doi-asserted-by":"publisher","unstructured":"I.\u00a0Despotovi\u0107, B.\u00a0Goossens, W.\u00a0Philips, MRI segmentation of the human brain: challenges, methods, and applications, Computational and mathematical methods in medicine 2015 (2015).\u00a0https:\/\/doi.org\/10.1155\/2015\/450341.","DOI":"10.1155\/2015\/450341"},{"issue":"3","key":"613_CR62","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1007\/s10278-015-9847-8","volume":"29","author":"P Kalavathi","year":"2016","unstructured":"P.\u00a0Kalavathi, V.\u00a0S. Prasath, Methods on skull stripping of MRI head scan images\u2013a review, Journal of digital imaging 29\u00a0(3) (2016) 365\u2013379.\u00a0https:\/\/doi.org\/10.1007\/s10278-015-9847-8.","journal-title":"Journal of digital imaging"},{"key":"613_CR63","doi-asserted-by":"crossref","unstructured":"R.\u00a0A. Hazarika, K.\u00a0Kharkongor, S.\u00a0Sanyal, A.\u00a0K. Maji, A comparative study on different skull stripping techniques from brain magnetic resonance imaging, in: International Conference on Innovative Computing and Communications, Springer, 2020, pp. 279\u2013288.","DOI":"10.1007\/978-981-15-1286-5_24"},{"key":"613_CR64","doi-asserted-by":"publisher","unstructured":"A.\u00a0Krizhevsky, I.\u00a0Sutskever, G.\u00a0E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems, 2012, pp. 1097\u20131105.\u00a0https:\/\/doi.org\/10.1145\/3065386.","DOI":"10.1145\/3065386"},{"key":"613_CR65","unstructured":"N.\u00a0Bjorck, C.\u00a0P. Gomes, B.\u00a0Selman, K.\u00a0Q. Weinberger, Understanding batch normalization, in: Advances in Neural Information Processing Systems, 2018, pp. 7694\u20137705."},{"key":"613_CR66","doi-asserted-by":"publisher","unstructured":"K.\u00a0Hara, D.\u00a0Saito, H.\u00a0Shouno, Analysis of function of rectified linear unit used in deep learning, in: 2015 International Joint Conference on Neural Networks (IJCNN), IEEE, 2015, pp. 1\u20138.\u00a0https:\/\/doi.org\/10.1109\/IJCNN.2015.7280578.","DOI":"10.1109\/IJCNN.2015.7280578"},{"key":"613_CR67","doi-asserted-by":"publisher","unstructured":"J.\u00a0Nagi, F.\u00a0Ducatelle, G.\u00a0A. Di\u00a0Caro, D.\u00a0Cire\u015fan, U.\u00a0Meier, A.\u00a0Giusti, F.\u00a0Nagi, J.\u00a0Schmidhuber, L.\u00a0M. Gambardella, Max-pooling convolutional neural networks for vision-based hand gesture recognition, in: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), IEEE, 2011, pp. 342\u2013347.\u00a0https:\/\/doi.org\/10.1109\/ICSIPA.2011.6144164.","DOI":"10.1109\/ICSIPA.2011.6144164"},{"key":"613_CR68","unstructured":"P.\u00a0Baldi, P.\u00a0J. Sadowski, Understanding dropout, in: Advances in neural information processing systems, 2013, pp. 2814\u20132822."},{"key":"613_CR69","unstructured":"V.\u00a0Dumoulin, F.\u00a0Visin, A guide to convolution arithmetic for deep learning, arXiv preprint arXiv:1603.07285 (2016)."},{"key":"613_CR70","doi-asserted-by":"crossref","unstructured":"F.\u00a0Lin, Q.\u00a0Wu, J.\u00a0Liu, D.\u00a0Wang, X.\u00a0Kong, Path aggregation u-net model for brain tumor segmentation, Multimedia Tools and Applications (2020) 1\u201314.","DOI":"10.1007\/s11042-020-08795-9"},{"key":"613_CR71","unstructured":"D.\u00a0P. Kingma, J.\u00a0Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)."}],"container-title":["Journal of Digital Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-022-00613-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10278-022-00613-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-022-00613-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,19]],"date-time":"2022-09-19T16:17:50Z","timestamp":1663604270000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10278-022-00613-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3,18]]},"references-count":71,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2022,8]]}},"alternative-id":["613"],"URL":"https:\/\/doi.org\/10.1007\/s10278-022-00613-y","relation":{},"ISSN":["0897-1889","1618-727X"],"issn-type":[{"value":"0897-1889","type":"print"},{"value":"1618-727X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,3,18]]},"assertion":[{"value":"4 June 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 January 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 January 2022","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"18 March 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}