{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T04:40:25Z","timestamp":1725943225453},"reference-count":48,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2020,6,19]],"date-time":"2020-06-19T00:00:00Z","timestamp":1592524800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,6,19]],"date-time":"2020-06-19T00:00:00Z","timestamp":1592524800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"name":"Instituto de Salud Carlos III, Government of Spain and FEDER","award":["DTS18\/00136"]},{"name":"Ministerio de Ciencia, Innovaci\u00f3n y Universidades, Government of Spain","award":["DPI2015-69948-R"]},{"name":"Ministerio de Ciencia, Innovaci\u00f3n y Universidades, Government of Spain","award":["RTI2018-095894-B-I00"]},{"name":"European Regional Development Fund and Xunta de Galicia","award":["ED431G\/01"]},{"name":"European Regional Development Fund and Xunta de Galicia","award":["ED431G 2019\/01"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Digit Imaging"],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1007\/s10278-020-00360-y","type":"journal-article","created":{"date-parts":[[2020,6,19]],"date-time":"2020-06-19T06:02:36Z","timestamp":1592546556000},"page":"1335-1351","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":25,"title":["Joint Diabetic Macular Edema Segmentation and Characterization in OCT Images"],"prefix":"10.1007","volume":"33","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2050-3786","authenticated-orcid":false,"given":"Joaquim","family":"de Moura","sequence":"first","affiliation":[]},{"given":"Gabriela","family":"Samagaio","sequence":"additional","affiliation":[]},{"given":"Jorge","family":"Novo","sequence":"additional","affiliation":[]},{"given":"Pablo","family":"Almuina","sequence":"additional","affiliation":[]},{"given":"Mar\u00eda Isabel","family":"Fern\u00e1ndez","sequence":"additional","affiliation":[]},{"given":"Marcos","family":"Ortega","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,6,19]]},"reference":[{"issue":"1","key":"360_CR1","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1007\/s10851-007-0015-8","volume":"28","author":"M Alem\u00e1n-Flores","year":"2007","unstructured":"Alem\u00e1n-Flores M, \u00c1lvarez L, Caselles V: Texture-oriented anisotropic filtering and geodesic active contours in breast tumor ultrasound segmentation. J Math Imaging Vis 28(1):81\u201397, 2007","journal-title":"J Math Imaging Vis"},{"key":"360_CR2","doi-asserted-by":"crossref","unstructured":"Baamonde S, de Moura J, Novo J, Ortega M: Automatic detection of epiretinal membrane in OCT images by means of local luminosity patterns. In: International Work-Conference on Artificial Neural Networks, 2017, pp 222\u2013235","DOI":"10.1007\/978-3-319-59153-7_20"},{"issue":"Mar","key":"360_CR3","first-page":"1229","volume":"3","author":"J Bi","year":"2003","unstructured":"Bi J, Bennett K, Embrechts M, Breneman C, Song M: Dimensionality reduction via sparse support vector machines. J Mach Learn Res 3(Mar):1229\u20131243, 2003","journal-title":"J Mach Learn Res"},{"key":"360_CR4","doi-asserted-by":"publisher","first-page":"393","DOI":"10.2147\/OPTH.S128509","volume":"11","author":"KJ Blinder","year":"2017","unstructured":"Blinder KJ, Dugel PU, Chen S, Jumper JM, Walt JG, Hollander DA, Scott LC: Anti-VEGF treatment of Diabetic Macular Edema in clinical practice: effectiveness and patterns of use (ECHO Study Report 1). Clin Ophthalmol (Auckland, NZ) 11:393, 2017","journal-title":"Clin Ophthalmol (Auckland, NZ)"},{"issue":"6","key":"360_CR5","doi-asserted-by":"publisher","first-page":"e339","DOI":"10.1016\/S2214-109X(13)70113-X","volume":"1","author":"RR Bourne","year":"2013","unstructured":"Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, Jonas JB, Keeffe J, Leasher J, Naidoo K, et al.: Causes of vision loss worldwide, 1990\u20132010: a systematic analysis. Lancet Glob Health 1(6):e339\u2013e349, 2013","journal-title":"Lancet Glob Health"},{"issue":"1","key":"360_CR6","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1023\/A:1007979827043","volume":"22","author":"V Caselles","year":"1997","unstructured":"Caselles V, Kimmel R, Sapiro G: Geodesic active contours. Int J Comput Vis 22(1):61\u201379, 1997","journal-title":"Int J Comput Vis"},{"issue":"2","key":"360_CR7","doi-asserted-by":"publisher","first-page":"266","DOI":"10.1109\/83.902291","volume":"10","author":"TF Chan","year":"2001","unstructured":"Chan TF, Vese LA: Active contours without edges. IEEE Trans Image Process 10(2):266\u2013277, 2001","journal-title":"IEEE Trans Image Process"},{"issue":"4","key":"360_CR8","doi-asserted-by":"publisher","first-page":"2035","DOI":"10.1109\/TIP.2012.2186306","volume":"21","author":"X Chen","year":"2012","unstructured":"Chen X, Udupa JK, Bagci U, Zhuge Y, Yao J: Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans Image Process 21(4):2035\u20132046, 2012","journal-title":"IEEE Trans Image Process"},{"key":"360_CR9","doi-asserted-by":"crossref","unstructured":"Chen Y, Wang Z, Zhao W: Liver segmentation in CT images using Chan-Vese model. In: 2009 First International Conference on Information Science and Engineering. IEEE, 2009, pp 3669\u20133672","DOI":"10.1109\/ICISE.2009.718"},{"issue":"2","key":"360_CR10","doi-asserted-by":"publisher","first-page":"202","DOI":"10.1001\/jamaophthalmol.2017.6256","volume":"136","author":"R Das","year":"2018","unstructured":"Das R, Spence G, Hogg RE, Stevenson M, Chakravarthy U: Disorganization of inner retina and outer retinal morphology in diabetic macular edema. JAMA Ophthalmol 136(2):202\u2013208, 2018","journal-title":"JAMA Ophthalmol"},{"key":"360_CR11","unstructured":"Ding W, Young M, Bourgault S, Lee S, Albiani DA, Kirker AW, Forooghian F, Sarunic M, Merkur AB, Beg MF: Automatic detection of subretinal fluid and sub-retinal pigment epithelium fluid in Optical Coherence Tomography images. In: 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, 2013, pp 7388\u20137391"},{"issue":"2-3","key":"360_CR12","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1023\/A:1007465528199","volume":"29","author":"N Friedman","year":"1997","unstructured":"Friedman N, Geiger D, Goldszmidt M: Bayesian network classifiers. Mach Learn 29(2-3):131\u2013163, 1997","journal-title":"Mach Learn"},{"key":"360_CR13","unstructured":"Funka-Lea G, Boykov Y, Florin C, Jolly MP, Moreau-Gobard R, Ramaraj R, Rinck D: Automatic heart isolation for CT coronary visualization using graph-cuts. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006. IEEE, 2006, pp 614\u2013617"},{"issue":"1","key":"360_CR14","doi-asserted-by":"publisher","first-page":"296","DOI":"10.1109\/JBHI.2018.2810379","volume":"23","author":"G Girish","year":"2019","unstructured":"Girish G, Thakur B, Chowdhury SR, Kothari AR, Rajan J: Segmentation of intra-retinal cysts from Optical Coherence Tomography images using a fully convolutional neural network model. IEEE J Biomed Health Inform 23(1):296\u2013304, 2019","journal-title":"IEEE J Biomed Health Inform"},{"issue":"2","key":"360_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.heliyon.2019.e01271","volume":"5","author":"A Gonz\u00e1lez-L\u00f3pez","year":"2019","unstructured":"Gonz\u00e1lez-L\u00f3pez A., de Moura J, Novo J, Ortega M, Penedo M: Robust segmentation of retinal layers in optical coherence tomography images based on a multistage active contour model. Heliyon 5(2):1\u201334, 2019","journal-title":"Heliyon"},{"issue":"3","key":"360_CR16","doi-asserted-by":"publisher","first-page":"224","DOI":"10.1016\/j.media.2007.01.002","volume":"11","author":"M Hernandez","year":"2007","unstructured":"Hernandez M, Frangi AF: Non-parametric geodesic active regions: method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA. Med Image Anal 11(3):224\u2013241, 2007","journal-title":"Med Image Anal"},{"issue":"3","key":"360_CR17","doi-asserted-by":"publisher","first-page":"637","DOI":"10.1162\/089976601300014493","volume":"13","author":"SS Keerthi","year":"2001","unstructured":"Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK: Improvements to platt\u2019s SMO algorithm for SVM classifier design. Neural Comput 13(3):637\u2013649, 2001","journal-title":"Neural Comput"},{"key":"360_CR18","doi-asserted-by":"crossref","unstructured":"Kroon DJ, Slump CH, Maal TJ: Optimized anisotropic rotational invariant diffusion scheme on cone-beam CT. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2010, pp 221\u2013228","DOI":"10.1007\/978-3-642-15711-0_28"},{"issue":"7","key":"360_CR19","doi-asserted-by":"publisher","first-page":"3440","DOI":"10.1364\/BOE.8.003440","volume":"8","author":"CS Lee","year":"2017","unstructured":"Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY: Deep-learning based, automated segmentation of Macular Edema in Optical Coherence Tomography. Biomed Opt Express 8(7):3440\u20133448, 2017","journal-title":"Biomed Opt Express"},{"key":"360_CR20","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1016\/j.ajo.2018.04.007","volume":"191","author":"H Lee","year":"2018","unstructured":"Lee H, Kang KE, Chung H, Kim HC: Automated segmentation of lesions including subretinal hyperreflective material in neovascular age-related macular degeneration. Am J Ophthalmol 191:64\u201375, 2018","journal-title":"Am J Ophthalmol"},{"issue":"1","key":"360_CR21","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1109\/TIT.1976.1055512","volume":"22","author":"T Lissack","year":"1976","unstructured":"Lissack T, Fu KS: Error estimation in pattern recognition via l\u03b1-distance between posterior density functions. IEEE Trans Inform Theory 22(1):34\u201345, 1976","journal-title":"IEEE Trans Inform Theory"},{"issue":"1","key":"360_CR22","doi-asserted-by":"publisher","first-page":"132","DOI":"10.1109\/83.817604","volume":"9","author":"C Liu","year":"2000","unstructured":"Liu C, Wechsler H: Robust coding schemes for indexing and retrieval from large face databases. IEEE Trans Image Process 9(1):132\u2013137, 2000","journal-title":"IEEE Trans Image Process"},{"issue":"2","key":"360_CR23","doi-asserted-by":"publisher","first-page":"158","DOI":"10.1109\/34.368173","volume":"17","author":"R Malladi","year":"1995","unstructured":"Malladi R, Sethian JA, Vemuri BC: Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158\u2013175, 1995","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"360_CR24","doi-asserted-by":"crossref","unstructured":"Marmor MF: Mechanisms of fluid accumulation in retinal edema. In: Macular Edema. Springer, 2000, pp 35\u201345","DOI":"10.1007\/978-94-011-4152-9_4"},{"issue":"3","key":"360_CR25","doi-asserted-by":"publisher","first-page":"1874","DOI":"10.1364\/BOE.8.001874","volume":"8","author":"A Montuoro","year":"2017","unstructured":"Montuoro A, Waldstein S, Gerendas B, Schmidt-Erfurth U, Bogunovi\u0107 H.: Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context. Biomed Opt Express 8(3):1874\u20131888, 2017","journal-title":"Biomed Opt Express"},{"issue":"5","key":"360_CR26","doi-asserted-by":"publisher","first-page":"577","DOI":"10.1002\/cpa.3160420503","volume":"42","author":"D Mumford","year":"1989","unstructured":"Mumford D, Shah J: Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577\u2013685, 1989","journal-title":"Commun Pure Appl Math"},{"key":"360_CR27","unstructured":"Nie F, Huang H, Cai X, Ding C: Efficient and robust feature selection via joint \u21132, 1-norms minimization. In: Advances in Neural Information Processing Systems, 2010, pp 1813\u20131821"},{"issue":"6","key":"360_CR28","doi-asserted-by":"publisher","first-page":"1276","DOI":"10.1109\/TMI.2017.2666045","volume":"36","author":"J Novosel","year":"2017","unstructured":"Novosel J, Vermeer KA, de Jong JH, Wang Z, van Vliet LJ: Joint segmentation of retinal layers and focal lesions in 3-D OCT data of topologically disrupted retinas. IEEE Trans Med Imaging 36(6):1276\u20131286, 2017","journal-title":"IEEE Trans Med Imaging"},{"issue":"6","key":"360_CR29","doi-asserted-by":"publisher","first-page":"688","DOI":"10.1016\/S0002-9394(99)00033-1","volume":"127","author":"T Otani","year":"1999","unstructured":"Otani T, Kishi S, Maruyama Y: Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol 127(6):688\u2013693, 1999","journal-title":"Am J Ophthalmol"},{"key":"360_CR30","doi-asserted-by":"crossref","unstructured":"Panozzo G, Parolini B, Gusson E, Mercanti A, Pinackatt S, Bertoldo G, Pignatto S: Diabetic macular edema: an OCT-based classification. In: Seminars in Ophthalmology, vol 19, 2004, pp 13\u201320","DOI":"10.1080\/08820530490519934"},{"key":"360_CR31","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1613\/jair.279","volume":"4","author":"JR Quinlan","year":"1996","unstructured":"Quinlan JR: Improved use of continuous attributes in c4.5. J Artif Intell Res 4:77\u201390, 1996","journal-title":"J Artif Intell Res"},{"issue":"5","key":"360_CR32","first-page":"989","volume":"65","author":"A Rashno","year":"2018","unstructured":"Rashno A, Koozekanani DD, Drayna PM, Nazari B, Sadri S, Rabbani H, Parhi KK: Fully automated segmentation of fluid\/cyst regions in Optical Coherence Tomography images with diabetic macular edema Using neutrosophic sets and graph algorithms. IEEE Trans Biomed Eng 65(5):989\u20131001, 2018","journal-title":"IEEE Trans Biomed Eng"},{"key":"360_CR33","doi-asserted-by":"crossref","unstructured":"Rother C, Kolmogorov V, Blake A: Grabcut: Interactive foreground extraction using iterated graph cuts. In: ACM Transactions on graphics (TOG), vol 23. ACM, 2004, pp 309\u2013314","DOI":"10.1145\/1015706.1015720"},{"issue":"8","key":"360_CR34","doi-asserted-by":"publisher","first-page":"3627","DOI":"10.1364\/BOE.8.003627","volume":"8","author":"A Roy","year":"2017","unstructured":"Roy A, Conjeti S, Phani Karri S, Sheet D, Katouzian A, Wachinger C, Navab N: Relaynet: retinal layer and fluid segmentation of macular Optical Coherence Tomography using fully convolutional network. Biomed Optics Express 8(8):3627\u20133642, 2017","journal-title":"Biomed Optics Express"},{"key":"360_CR35","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1016\/j.cmpb.2018.05.033","volume":"163","author":"G Samagaio","year":"2018","unstructured":"Samagaio G, Est\u00e9vez A., de Moura J, Novo J, Fernandez MI, Ortega M: Automatic macular edema identification and characterization using OCT images. Comput Methods Programs Biomed 163: 47\u201363, 2018","journal-title":"Comput Methods Programs Biomed"},{"key":"360_CR36","doi-asserted-by":"crossref","unstructured":"Samagaio G, de Moura J, Novo J, Ortega M: Optical coherence tomography denoising by means of a fourier butterworth Filter-Based approach. In: International Conference on Image Analysis and Processing. Springer, 2017, pp 422\u2013432","DOI":"10.1007\/978-3-319-68548-9_39"},{"key":"360_CR37","doi-asserted-by":"crossref","unstructured":"Samagaio G, de Moura J, Novo J, Ortega M: Optical coherence tomography denoising by means of a fourier butterworth Filter-Based approach. In: International Conference on Image Analysis and Processing. Springer, 2017, pp 422\u2013432","DOI":"10.1007\/978-3-319-68548-9_39"},{"key":"360_CR38","doi-asserted-by":"publisher","first-page":"472","DOI":"10.1016\/j.procs.2018.07.281","volume":"126","author":"G Samagaio","year":"2018","unstructured":"Samagaio G, de Moura J, Novo J, Ortega M: Automatic segmentation of diffuse retinal thickening edemas using Optical Coherence Tomography images. Procedia Comput Sci 126:472\u2013481, 2018","journal-title":"Procedia Comput Sci"},{"issue":"4","key":"360_CR39","doi-asserted-by":"publisher","first-page":"549","DOI":"10.1016\/j.ophtha.2017.10.031","volume":"125","author":"T Schlegl","year":"2018","unstructured":"Schlegl T, Waldstein S, Bogunovic H, Endstra\u00dfer F, Sadeghipour A, Philip AM, Podkowinski D, Gerendas BS, Langs G, Schmidt-Erfurth U: Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology 125(4):549\u2013558, 2018","journal-title":"Ophthalmology"},{"key":"360_CR40","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1016\/j.cmpb.2016.11.001","volume":"139","author":"D Sidib\u00e9","year":"2017","unstructured":"Sidib\u00e9 D, Sankar S, Lema\u00eetre G, Rastgoo M, Massich J, Cheung C, Tan G, Milea D, et al.: An anomaly detection approach for the identification of DME patients using spectral domain Optical Coherence Tomography Images. Computer Methods and Programs in Biomedicine 139:109\u2013117, 2017","journal-title":"Computer Methods and Programs in Biomedicine"},{"issue":"02","key":"360_CR41","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1142\/S0218001488000145","volume":"2","author":"W Siedlecki","year":"1988","unstructured":"Siedlecki W, Sklansky J: On automatic feature selection. Int J Pattern Recognit Artif Intell 2(02):197\u2013220, 1988","journal-title":"Int J Pattern Recognit Artif Intell"},{"issue":"Jun","key":"360_CR42","first-page":"1277","volume":"8","author":"S Srivastava","year":"2007","unstructured":"Srivastava S, Gupta MR, Frigyik BA: Bayesian quadratic discriminant analysis. J Mach Learn Res 8(Jun):1277\u20131305, 2007","journal-title":"J Mach Learn Res"},{"issue":"21","key":"360_CR43","first-page":"739","volume":"6","author":"Z Sun","year":"2016","unstructured":"Sun Z, Chen H, Shi F, Wang L, Zhu W, Xiang D, Yan C, Li L, Chen X: An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images. Sci Rep 6(21):739, 2016","journal-title":"Sci Rep"},{"issue":"4","key":"360_CR44","doi-asserted-by":"publisher","first-page":"1545","DOI":"10.1364\/BOE.9.001545","volume":"9","author":"FG Venhuizen","year":"2018","unstructured":"Venhuizen FG, van Ginneken B, Liefers B, van Asten F, Schreur V, Fauser S, Hoyng C, Theelen T: S\u00e1nchez, C.I.: Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor Optical Coherence Tomography. Biomed Opt Express 9(4):1545\u20131569, 2018","journal-title":"Biomed Opt Express"},{"key":"360_CR45","doi-asserted-by":"crossref","unstructured":"Yang Y: Expert network: Effective and efficient learning from human decisions in text categorization and retrieval. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Springer-Verlag New York Inc, 1994, pp 13\u201322","DOI":"10.1007\/978-1-4471-2099-5_2"},{"key":"360_CR46","doi-asserted-by":"crossref","unstructured":"Yazdanpanah A, Hamarneh G, Smith B, Sarunic M: Intra-retinal layer segmentation in Optical Coherence Tomography using an active contour approach. In: International conference on medical image computing and computer-assisted intervention. Springer, 2009, pp 649\u2013656","DOI":"10.1007\/978-3-642-04271-3_79"},{"issue":"2","key":"360_CR47","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1016\/j.ajo.2012.07.030","volume":"155","author":"Y Zheng","year":"2013","unstructured":"Zheng Y, Sahni J, Campa C, Stangos AN, Raj A: Harding, S.P.: Computerized assessment of intraretinal and subretinal fluid regions in spectral-domain Optical Coherence Tomography images of the retina. Am J Ophthalmol 155(2):277\u2013286, 2013","journal-title":"Am J Ophthalmol"},{"issue":"9","key":"360_CR48","doi-asserted-by":"publisher","first-page":"884","DOI":"10.1109\/34.537343","volume":"18","author":"S Zhu","year":"1996","unstructured":"Zhu S, Yuille A: Region competition: Unifying Snakes, Region Growing, and bayes\/MDL for Multiband Image Segmentation. IEEE Trans Pattern Anal Mach Intell 18(9):884\u2013900, 1996","journal-title":"IEEE Trans Pattern Anal Mach Intell"}],"container-title":["Journal of Digital Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-020-00360-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10278-020-00360-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-020-00360-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,6,18]],"date-time":"2021-06-18T23:56:54Z","timestamp":1624060614000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10278-020-00360-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,6,19]]},"references-count":48,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2020,10]]}},"alternative-id":["360"],"URL":"https:\/\/doi.org\/10.1007\/s10278-020-00360-y","relation":{},"ISSN":["0897-1889","1618-727X"],"issn-type":[{"value":"0897-1889","type":"print"},{"value":"1618-727X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,6,19]]},"assertion":[{"value":"19 June 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}