{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,5]],"date-time":"2024-08-05T18:37:33Z","timestamp":1722883053851},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2018,11,21]],"date-time":"2018-11-21T00:00:00Z","timestamp":1542758400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100002994","name":"Ministry of Knowledge Economy","doi-asserted-by":"crossref","award":["10041618"],"id":[{"id":"10.13039\/501100002994","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"publisher","award":["NRF-2016R1C1B1011105"],"id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Digit Imaging"],"published-print":{"date-parts":[[2019,10]]},"DOI":"10.1007\/s10278-018-0158-8","type":"journal-article","created":{"date-parts":[[2018,11,21]],"date-time":"2018-11-21T14:43:15Z","timestamp":1542811395000},"page":"779-792","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Hybrid Airway Segmentation Using Multi-Scale Tubular Structure Filters and Texture Analysis on 3D Chest CT Scans"],"prefix":"10.1007","volume":"32","author":[{"given":"Minho","family":"Lee","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1380-6682","authenticated-orcid":false,"given":"June-Goo","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Namkug","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Joon Beom","family":"Seo","sequence":"additional","affiliation":[]},{"given":"Sang Min","family":"Lee","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,11,21]]},"reference":[{"key":"158_CR1","first-page":"S152","volume":"6","author":"K Porpodis","year":"2014","unstructured":"Porpodis K et al.: Pneumothorax and asthma. J Thorac Dis 6:S152, 2014","journal-title":"J Thorac Dis"},{"key":"158_CR2","doi-asserted-by":"publisher","first-page":"1153","DOI":"10.1016\/S1076-6332(03)80517-2","volume":"9","author":"AP Kiraly","year":"2002","unstructured":"Kiraly AP, Higgins WE, McLennan G, Hoffman EA, Reinhardt JM: Three-dimensional human airway segmentation methods for clinical virtual bronchoscopy. Acad Radiol 9:1153\u20131168, 2002","journal-title":"Acad Radiol"},{"key":"158_CR3","doi-asserted-by":"publisher","first-page":"5575","DOI":"10.1118\/1.3005633","volume":"35","author":"B Li","year":"2008","unstructured":"Li B, Christensen GE, Hoffman EA, McLennan G, Reinhardt JM: Pulmonary CT image registration and warping for tracking tissue deformation during the respiratory cycle through 3D consistent image registration. Med Phys 35:5575\u20135583, 2008","journal-title":"Med Phys"},{"key":"158_CR4","doi-asserted-by":"publisher","first-page":"465","DOI":"10.1007\/s11548-011-0638-5","volume":"7","author":"B Chen","year":"2012","unstructured":"Chen B, Kitasaka T, Honma H, Takabatake H, Mori M, Natori H, Mori K: Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images. Int J Comput Assist Radiol Surg 7:465\u2013482, 2012","journal-title":"Int J Comput Assist Radiol Surg"},{"key":"158_CR5","doi-asserted-by":"publisher","first-page":"490","DOI":"10.1109\/42.929615","volume":"20","author":"S Hu","year":"2001","unstructured":"Hu S, Hoffman EA, Reinhardt JM: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 20:490\u2013498, 2001","journal-title":"IEEE Trans Med Imaging"},{"key":"158_CR6","unstructured":"Kuhnigk J-M, Hahn H, Hindennach M, Dicken V, Krass S, Peitgen H-O: Lung lobe segmentation by anatomy-guided 3 D watershed transform. Proc. Proceedings of SPIE: City"},{"key":"158_CR7","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1007\/s00408-008-9071-0","volume":"186","author":"YK Lee","year":"2008","unstructured":"Lee YK et al.: Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung 186:157\u2013165, 2008","journal-title":"Lung"},{"key":"158_CR8","unstructured":"Mori K, et al.: Lung lobe and segmental lobe extraction from 3D chest CT datasets based on figure decomposition and Voronoi division. Proc. Medical Imaging: City"},{"key":"158_CR9","doi-asserted-by":"publisher","first-page":"2093","DOI":"10.1109\/TMI.2012.2209674","volume":"31","author":"P Lo","year":"2012","unstructured":"Lo P, van Ginneken B, Reinhardt JM, Yavarna T, de Jong PA, Irving B, Fetita C, Ortner M, Pinho R, Sijbers J, Feuerstein M, Fabijanska A, Bauer C, Beichel R, Mendoza CS, Wiemker R, Lee J, Reeves AP, Born S, Weinheimer O, van Rikxoort EM, Tschirren J, Mori K, Odry B, Naidich DP, Hartmann I, Hoffman EA, Prokop M, Pedersen JH, de Bruijne M: Extraction of airways from CT (EXACT'09). IEEE Trans Med Imaging 31:2093\u20132107, 2012","journal-title":"IEEE Trans Med Imaging"},{"key":"158_CR10","doi-asserted-by":"publisher","first-page":"940","DOI":"10.1109\/TMI.2003.815905","volume":"22","author":"D Aykac","year":"2003","unstructured":"Aykac D, Hoffman EA, McLennan G, Reinhardt JM: Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans Med Imaging 22:940\u2013950, 2003","journal-title":"IEEE Trans Med Imaging"},{"key":"158_CR11","unstructured":"Mori K, Hasegawa J-I, Toriwaki J-I, Anno H, Katada K: Automated extraction and visualization of bronchus from 3D CT images of lung. Proc. Computer Vision, Virtual Reality and Robotics in Medicine: City"},{"key":"158_CR12","unstructured":"Singh H, Crawford M, Curtin J, Zwiggelaar R: Automated 3D segmentation of the lung airway tree using gain-based region growing approach. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City"},{"key":"158_CR13","doi-asserted-by":"publisher","first-page":"314","DOI":"10.1109\/42.500140","volume":"15","author":"M Sonka","year":"1996","unstructured":"Sonka M, Park W, Hoffman EA: Rule-based detection of intrathoracic airway trees. IEEE Trans Med Imaging 15:314\u2013326, 1996","journal-title":"IEEE Trans Med Imaging"},{"key":"158_CR14","first-page":"321","volume":"17","author":"T Kitasaka","year":"2002","unstructured":"Kitasaka T, Mori K, Hasegawa J, Toriwaki J: A method for extraction of bronchus regions from 3D branch tracing and image sharpening for airway tree chest X-ray images by analyzing structural features of the bronchus. Forma 17:321\u2013338, 2002","journal-title":"Forma"},{"key":"158_CR15","doi-asserted-by":"publisher","first-page":"1529","DOI":"10.1109\/TMI.2005.857654","volume":"24","author":"J Tschirren","year":"2005","unstructured":"Tschirren J, Hoffman EA, McLennan G, Sonka M: Intrathoracic airway trees: Segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans Med Imaging 24:1529\u20131539, 2005","journal-title":"IEEE Trans Med Imaging"},{"key":"158_CR16","unstructured":"Feuerstein M, Kitasaka T, Mori K: Adaptive branch tracing and image sharpening for airway tree extraction in 3-D chest CT. Proc. Proc Second International Workshop on Pulmonary Image Analysis: City"},{"key":"158_CR17","doi-asserted-by":"crossref","unstructured":"Schlathoelter T, Lorenz C, Carlsen IC, Renisch S, Deschamps T: Simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy. Proc Medical Imaging 2002: City","DOI":"10.1117\/12.467061"},{"key":"158_CR18","doi-asserted-by":"publisher","first-page":"527","DOI":"10.1016\/j.media.2010.03.004","volume":"14","author":"P Lo","year":"2010","unstructured":"Lo P, Sporring J, Ashraf H, Pedersen JJ, de Bruijne M: Vessel-guided airway tree segmentation: A voxel classification approach. Med Image Anal 14:527\u2013538, 2010","journal-title":"Med Image Anal"},{"key":"158_CR19","doi-asserted-by":"publisher","first-page":"1063","DOI":"10.1109\/TMI.2014.2374615","volume":"34","author":"C Bauer","year":"2015","unstructured":"Bauer C, Eberlein M, Beichel RR: Graph-based airway tree reconstruction from chest CT scans: evaluation of different features on five cohorts. IEEE Trans Med Imaging 34:1063\u20131076, 2015","journal-title":"IEEE Trans Med Imaging"},{"key":"158_CR20","unstructured":"Lo P, de Bruijne M: Voxel classification based airway tree segmentation. Proc. Medical Imaging: City"},{"key":"158_CR21","unstructured":"Yano H, Marco F, Kitasaka T, Mori K: Study on bronchus region extraction from 3D chest CT images using loca1 intensity structure analysis and CT value distribution feature. The institute of electronics information and communication, MI2009\u201313:69\u201374, 2009"},{"key":"158_CR22","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.media.2015.05.003","volume":"24","author":"Z Xu","year":"2015","unstructured":"Xu Z, Bagci U, Foster B, Mansoor A, Udupa JK, Mollura DJ: A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT. Med Image Anal 24:1\u201317, 2015","journal-title":"Med Image Anal"},{"key":"158_CR23","doi-asserted-by":"crossref","unstructured":"Meng Q, Kitasaka T, Nimura Y, Oda M, Ueno J, Mori K: Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume. Int J Comput Assist Radiol Surg:1\u201317, 2016","DOI":"10.1007\/s11548-016-1492-2"},{"key":"158_CR24","doi-asserted-by":"publisher","first-page":"W248","DOI":"10.2214\/AJR.09.2672","volume":"194","author":"EJ Chae","year":"2010","unstructured":"Chae EJ, Seo JB, Song JW, Kim N, Park BW, Lee YK, Oh YM, Lee SD, Lim SY: Slope of emphysema index: an objective descriptor of regional heterogeneity of emphysema and an independent determinant of pulmonary function. Am J Roentgenol 194:W248\u2013W255, 2010","journal-title":"Am J Roentgenol"},{"key":"158_CR25","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1016\/0031-3203(81)90009-1","volume":"13","author":"DH Ballard","year":"1981","unstructured":"Ballard DH: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn 13:111\u2013122, 1981","journal-title":"Pattern Recogn"},{"key":"158_CR26","unstructured":"Frangi AF, Niessen WJ, Vincken KL, Viergever MA: Multiscale vessel enhancement filtering. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City"},{"key":"158_CR27","unstructured":"Serra J: Image analysis and mathematical morphology, v. 1. Academic press, 1982"},{"key":"158_CR28","unstructured":"Kong TY, Rosenfeld A: Topological algorithms for digital image processing. Elsevier, 1996"},{"key":"158_CR29","unstructured":"Kimmel R, Shaked D, Kiryati N, Bruckstein AM: Skeletonization via distance maps and level sets. Proc. Photonics for Industrial Applications: City"},{"key":"158_CR30","unstructured":"Telea A, Vilanova A: A robust level-set algorithm for centerline extraction. Proc. Proceedings of the symposium on Data visualisation 2003: City"},{"key":"158_CR31","doi-asserted-by":"publisher","first-page":"246","DOI":"10.1006\/gmip.1996.0021","volume":"58","author":"JK Udupa","year":"1996","unstructured":"Udupa JK, Samarasekera S: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph Models Image Process 58:246\u2013261, 1996","journal-title":"Graph Models Image Process"},{"key":"158_CR32","doi-asserted-by":"publisher","first-page":"051912","DOI":"10.1118\/1.4802214","volume":"40","author":"Y Chang","year":"2013","unstructured":"Chang Y, Lim J, Kim N, Seo JB, Lynch DA: A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier. Med Phys 40:051912, 2013","journal-title":"Med Phys"},{"key":"158_CR33","doi-asserted-by":"publisher","first-page":"871","DOI":"10.1148\/radiol.2283020505","volume":"228","author":"F Chabat","year":"2003","unstructured":"Chabat F, Yang G-Z, Hansell DM: Obstructive lung diseases: Texture classification for differentiation at ct 1. Radiology 228:871\u2013877, 2003","journal-title":"Radiology"},{"key":"158_CR34","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1007\/s10278-008-9147-7","volume":"22","author":"N Kim","year":"2009","unstructured":"Kim N, Seo JB, Lee Y, Lee JG, Kim SS, Kang S-H: Development of an automatic classification system for differentiation of obstructive lung disease using HRCT. J Digit Imaging 22:136\u2013148, 2009","journal-title":"J Digit Imaging"},{"key":"158_CR35","doi-asserted-by":"publisher","first-page":"1217","DOI":"10.1016\/j.media.2014.07.003","volume":"18","author":"RD Rudyanto","year":"2014","unstructured":"Rudyanto RD, Kerkstra S, van Rikxoort EM, Fetita C, Brillet PY, Lefevre C, Xue W, Zhu X, Liang J, \u00d6ks\u00fcz \u0130, \u00dcnay D, Kadipa\u015faog\u02c7lu K, Est\u00e9par RSJ, Ross JC, Washko GR, Prieto JC, Hoyos MH, Orkisz M, Meine H, H\u00fcllebrand M, St\u00f6cker C, Mir FL, Naranjo V, Villanueva E, Staring M, Xiao C, Stoel BC, Fabijanska A, Smistad E, Elster AC, Lindseth F, Foruzan AH, Kiros R, Popuri K, Cobzas D, Jimenez-Carretero D, Santos A, Ledesma-Carbayo MJ, Helmberger M, Urschler M, Pienn M, Bosboom DGH, Campo A, Prokop M, de Jong PA, Ortiz-de-Solorzano C, Mu\u00f1oz-Barrutia A, van Ginneken B: Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study. Med Image Anal 18:1217\u20131232, 2014","journal-title":"Med Image Anal"},{"key":"158_CR36","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1016\/j.media.2010.08.003","volume":"15","author":"C Xiao","year":"2011","unstructured":"Xiao C, Staring M, Shamonin D, Reiber JH, Stolk J, Stoel BC: A strain energy filter for 3D vessel enhancement with application to pulmonary CT images. Med Image Anal 15:112\u2013124, 2011","journal-title":"Med Image Anal"},{"key":"158_CR37","first-page":"273","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes C, Vapnik V: Support-vector networks. Mach Learn 20:273\u2013297, 1995","journal-title":"Mach Learn"},{"key":"158_CR38","doi-asserted-by":"publisher","first-page":"287","DOI":"10.1016\/j.compbiomed.2012.12.004","volume":"43","author":"M Keshani","year":"2013","unstructured":"Keshani M, Azimifar Z, Tajeripour F, Boostani R: Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system. Comput Biol Med 43:287\u2013300, 2013","journal-title":"Comput Biol Med"},{"key":"158_CR39","unstructured":"Smola AJ, Sch\u00f6lkopf B: Learning with kernels: Citeseer, 1998"},{"key":"158_CR40","doi-asserted-by":"publisher","first-page":"1143","DOI":"10.1016\/j.patrec.2004.03.009","volume":"25","author":"S Zheng","year":"2004","unstructured":"Zheng S, Liu J, Tian JW: A new efficient SVM-based edge detection method. Pattern Recogn Lett 25:1143\u20131154, 2004 \n http:\/\/image.diku.dk\/exact\/exact_results.php","journal-title":"Pattern Recogn Lett"}],"container-title":["Journal of Digital Imaging"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-018-0158-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10278-018-0158-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-018-0158-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,11,20]],"date-time":"2019-11-20T19:22:04Z","timestamp":1574277724000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10278-018-0158-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11,21]]},"references-count":40,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2019,10]]}},"alternative-id":["158"],"URL":"https:\/\/doi.org\/10.1007\/s10278-018-0158-8","relation":{},"ISSN":["0897-1889","1618-727X"],"issn-type":[{"value":"0897-1889","type":"print"},{"value":"1618-727X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,11,21]]},"assertion":[{"value":"21 November 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}