{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T02:49:46Z","timestamp":1726195786734},"reference-count":30,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2017,10,17]],"date-time":"2017-10-17T00:00:00Z","timestamp":1508198400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100003052","name":"Ministry of Trade, Industry and Energy","doi-asserted-by":"publisher","award":["10041618"],"id":[{"id":"10.13039\/501100003052","id-type":"DOI","asserted-by":"publisher"}]},{"name":"MSIP\/IITP","award":["R6910-15-1023"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Digit Imaging"],"published-print":{"date-parts":[[2018,8]]},"DOI":"10.1007\/s10278-017-0028-9","type":"journal-article","created":{"date-parts":[[2017,10,17]],"date-time":"2017-10-17T12:29:44Z","timestamp":1508243384000},"page":"415-424","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":85,"title":["Comparison of Shallow and Deep Learning Methods on Classifying the Regional Pattern of Diffuse Lung Disease"],"prefix":"10.1007","volume":"31","author":[{"given":"Guk Bae","family":"Kim","sequence":"first","affiliation":[]},{"given":"Kyu-Hwan","family":"Jung","sequence":"additional","affiliation":[]},{"given":"Yeha","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Hyun-Jun","family":"Kim","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3438-2217","authenticated-orcid":false,"given":"Namkug","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Sanghoon","family":"Jun","sequence":"additional","affiliation":[]},{"given":"Joon Beom","family":"Seo","sequence":"additional","affiliation":[]},{"given":"David A.","family":"Lynch","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,10,17]]},"reference":[{"issue":"7","key":"28_CR1","doi-asserted-by":"crossref","first-page":"810","DOI":"10.1164\/rccm.200602-163OC","volume":"174","author":"G Raghu","year":"2006","unstructured":"Raghu G et al.: Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810\u2013816, 2006","journal-title":"Am J Respir Crit Care Med"},{"issue":"2","key":"28_CR2","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/S1076-6332(03)80041-7","volume":"10","author":"JC Scatarige","year":"2003","unstructured":"Scatarige JC et al.: Utility of high-resolution CT for management of diffuse lung disease: Results of a survey of US pulmonary physicians. Acad Radiol 10(2):167\u2013175, 2003","journal-title":"Acad Radiol"},{"issue":"1","key":"28_CR3","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1148\/radiology.179.1.2006262","volume":"179","author":"P Grenier","year":"1991","unstructured":"Grenier P et al.: Chronic diffuse interstitial lung disease: Diagnostic value of chest radiography and high-resolution CT. Radiology 179(1):123\u2013132, 1991","journal-title":"Radiology"},{"issue":"1","key":"28_CR4","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1148\/radiology.175.1.2315492","volume":"175","author":"WA Kalender","year":"1990","unstructured":"Kalender WA et al.: Measurement of pulmonary parenchymal attenuation: Use of spirometric gating with quantitative CT. Radiology 175(1):265\u2013268, 1990","journal-title":"Radiology"},{"issue":"3","key":"28_CR5","doi-asserted-by":"crossref","first-page":"871","DOI":"10.1148\/radiol.2283020505","volume":"228","author":"F Chabat","year":"2003","unstructured":"Chabat F, Yang G-Z, Hansell DM: Obstructive lung diseases: Texture classification for differentiation at CT 1. Radiology 228(3):871\u2013877, 2003","journal-title":"Radiology"},{"issue":"4","key":"28_CR6","first-page":"233","volume":"22","author":"T Fujisaki","year":"2003","unstructured":"Fujisaki T et al.: Effects of density changes in the chest on lung stereotactic radiotherapy. Radiat Med 22(4):233\u2013238, 2003","journal-title":"Radiat Med"},{"issue":"4","key":"28_CR7","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1109\/TMI.2006.870889","volume":"25","author":"Y Xu","year":"2006","unstructured":"Xu Y et al.: MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies. IEEE Trans Med Imaging 25(4):464\u2013475, 2006","journal-title":"IEEE Trans Med Imaging"},{"issue":"9","key":"28_CR8","doi-asserted-by":"crossref","first-page":"566","DOI":"10.1097\/00004424-199709000-00009","volume":"32","author":"S Delorme","year":"1997","unstructured":"Delorme S et al.: Usual interstitial pneumonia: Quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis. Investig Radiol 32(9):566\u2013574, 1997","journal-title":"Investig Radiol"},{"issue":"8","key":"28_CR9","doi-asserted-by":"crossref","first-page":"969","DOI":"10.1016\/j.acra.2006.04.017","volume":"13","author":"Y Xu","year":"2006","unstructured":"Xu Y et al.: Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM). Acad Radiol 13(8):969\u2013978, 2006","journal-title":"Acad Radiol"},{"issue":"2","key":"28_CR10","doi-asserted-by":"crossref","first-page":"617","DOI":"10.1378\/chest.06-2325","volume":"132","author":"R Yuan","year":"2007","unstructured":"Yuan R et al.: The effects of radiation dose and CT manufacturer on measurements of lung densitometry. Chest J 132(2):617\u2013623, 2007","journal-title":"Chest J"},{"issue":"2","key":"28_CR11","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.cmpb.2008.10.008","volume":"93","author":"Y Lee","year":"2009","unstructured":"Lee Y et al.: Performance testing of several classifiers for differentiating obstructive lung diseases based on texture analysis at high-resolution computerized tomography (HRCT). Comput Methods Prog Biomed 93(2):206\u2013215, 2009","journal-title":"Comput Methods Prog Biomed"},{"issue":"6","key":"28_CR12","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1097\/RLI.0b013e31816901c7","volume":"43","author":"YS Park","year":"2008","unstructured":"Park YS et al.: Texture-based quantification of pulmonary emphysema on high-resolution computed tomography: Comparison with density-based quantification and correlation with pulmonary function test. Investig Radiol 43(6):395\u2013402, 2008","journal-title":"Investig Radiol"},{"issue":"10","key":"28_CR13","doi-asserted-by":"crossref","first-page":"1104","DOI":"10.1016\/S1076-6332(03)00330-1","volume":"10","author":"EA Hoffman","year":"2003","unstructured":"Hoffman EA et al.: Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function 1. Acad Radiol 10(10):1104\u20131118, 2003","journal-title":"Acad Radiol"},{"issue":"2","key":"28_CR14","doi-asserted-by":"crossref","first-page":"648","DOI":"10.1164\/ajrccm.160.2.9804094","volume":"160","author":"R Uppaluri","year":"1999","unstructured":"Uppaluri R et al.: Computer recognition of regional lung disease patterns. Am J Respir Crit Care Med 160(2):648\u2013654, 1999","journal-title":"Am J Respir Crit Care Med"},{"issue":"22","key":"28_CR15","doi-asserted-by":"crossref","first-page":"6881","DOI":"10.1088\/0031-9155\/54\/22\/009","volume":"54","author":"J Wang","year":"2009","unstructured":"Wang J et al.: Computerized detection of diffuse lung disease in MDCT: The usefulness of statistical texture features. Phys Med Biol 54(22):6881, 2009","journal-title":"Phys Med Biol"},{"issue":"3","key":"28_CR16","first-page":"692","volume":"23","author":"RG Yoon","year":"2013","unstructured":"Yoon RG et al.: Quantitative assessment of change in regional disease patterns on serial HRCT of fibrotic interstitial pneumonia with texture-based automated quantification system. Eur Radiol 23(3):692\u2013701, 2013","journal-title":"Eur Radiol"},{"issue":"3","key":"28_CR17","doi-asserted-by":"crossref","first-page":"297","DOI":"10.3348\/kjr.2011.12.3.297","volume":"12","author":"SO Park","year":"2011","unstructured":"Park SO et al.: Comparison of usual interstitial pneumonia and nonspecific interstitial pneumonia: Quantification of disease severity and discrimination between two diseases on HRCT using a texture-based automated system. Korean J Radiol 12(3):297\u2013307, 2011","journal-title":"Korean J Radiol"},{"issue":"5","key":"28_CR18","doi-asserted-by":"crossref","first-page":"051912","DOI":"10.1118\/1.4802214","volume":"40","author":"Y Chang","year":"2013","unstructured":"Chang Y et al.: A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier. Med Phys 40(5):051912, 2013","journal-title":"Med Phys"},{"key":"28_CR19","unstructured":"Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst 1097\u20131105, 2012"},{"key":"28_CR20","volume-title":"A survey on deep learning: One small step toward AI","author":"D Mo","year":"2012","unstructured":"Mo D: A survey on deep learning: One small step toward AI. Albuquerque: Dept. Computer Science, Univ. of New Mexico, 2012"},{"key":"28_CR21","unstructured":"Goodfellow IJ et al.: Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082, 2013"},{"key":"28_CR22","doi-asserted-by":"crossref","unstructured":"Cruz-Roa AA et al.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2013. Springer, 2013, pp 403\u2013410","DOI":"10.1007\/978-3-642-40763-5_50"},{"issue":"1","key":"28_CR23","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.media.2014.09.005","volume":"19","author":"W Bai","year":"2015","unstructured":"Bai W et al.: Multi-atlas segmentation with augmented features for cardiac MR images. Med Image Anal 19(1):98\u2013109, 2015","journal-title":"Med Image Anal"},{"key":"28_CR24","doi-asserted-by":"crossref","unstructured":"de BrebissonA, Montana G: Deep Neural Networks for Anatomical Brain Segmentation. arXiv preprint arXiv:1502.02445, 2015","DOI":"10.1109\/CVPRW.2015.7301312"},{"key":"28_CR25","doi-asserted-by":"crossref","unstructured":"Li Q et al.: Medical image classification with convolutional neural network. Control Automation Robotics & Vision (ICARCV), 2014 13th International Conference on 844\u2013848, 2014","DOI":"10.1109\/ICARCV.2014.7064414"},{"key":"28_CR26","unstructured":"Gao M et al.: Holistic Classification of CT Attenuation Patterns for Interstitial Lung Diseases via Deep Convolutional Neural Networks. crcv.ucf.edu"},{"issue":"5","key":"28_CR27","doi-asserted-by":"crossref","first-page":"1262","DOI":"10.1109\/TMI.2016.2526687","volume":"35","author":"G Tulder van","year":"2016","unstructured":"van Tulder G, de Bruijne M: Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines. IEEE Trans Med Imaging 35(5):1262\u20131272, 2016","journal-title":"IEEE Trans Med Imaging"},{"issue":"5","key":"28_CR28","doi-asserted-by":"crossref","first-page":"1207","DOI":"10.1109\/TMI.2016.2535865","volume":"35","author":"M Anthimopoulos","year":"2016","unstructured":"Anthimopoulos M et al.: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207\u20131216, 2016","journal-title":"IEEE Trans Med Imaging"},{"issue":"5","key":"28_CR29","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.1109\/TMI.2016.2528162","volume":"35","author":"H-C Shin","year":"2016","unstructured":"Shin H-C et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285\u20131298, 2016","journal-title":"IEEE Trans Med Imaging"},{"key":"28_CR30","doi-asserted-by":"crossref","unstructured":"Szegedy C et al.: Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014","DOI":"10.1109\/CVPR.2015.7298594"}],"container-title":["Journal of Digital Imaging"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10278-017-0028-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-017-0028-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-017-0028-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,4]],"date-time":"2019-10-04T16:26:16Z","timestamp":1570206376000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10278-017-0028-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,10,17]]},"references-count":30,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2018,8]]}},"alternative-id":["28"],"URL":"https:\/\/doi.org\/10.1007\/s10278-017-0028-9","relation":{},"ISSN":["0897-1889","1618-727X"],"issn-type":[{"value":"0897-1889","type":"print"},{"value":"1618-727X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,10,17]]}}}