{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T22:30:53Z","timestamp":1725316253062},"reference-count":37,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2017,8,7]],"date-time":"2017-08-07T00:00:00Z","timestamp":1502064000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,8,7]],"date-time":"2017-08-07T00:00:00Z","timestamp":1502064000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/100000054","name":"National Cancer Institute","doi-asserted-by":"publisher","award":["CA160045"],"id":[{"id":"10.13039\/100000054","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Digit Imaging"],"published-print":{"date-parts":[[2017,10]]},"DOI":"10.1007\/s10278-017-0009-z","type":"journal-article","created":{"date-parts":[[2017,8,7]],"date-time":"2017-08-07T18:04:35Z","timestamp":1502129075000},"page":"622-628","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":157,"title":["Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status"],"prefix":"10.1007","volume":"30","author":[{"given":"Panagiotis","family":"Korfiatis","sequence":"first","affiliation":[]},{"given":"Timothy L.","family":"Kline","sequence":"additional","affiliation":[]},{"given":"Daniel H.","family":"Lachance","sequence":"additional","affiliation":[]},{"given":"Ian F.","family":"Parney","sequence":"additional","affiliation":[]},{"given":"Jan C.","family":"Buckner","sequence":"additional","affiliation":[]},{"given":"Bradley J.","family":"Erickson","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,8,7]]},"reference":[{"key":"9_CR1","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1007\/s11060-011-0749-4","volume":"107","author":"DR Johnson","year":"2011","unstructured":"Johnson DR, O\u2019Neill BP: Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107:359\u2013364, 2011","journal-title":"J Neurooncol"},{"issue":"Suppl 7","key":"9_CR2","doi-asserted-by":"publisher","first-page":"vii2","DOI":"10.1093\/neuonc\/nou224","volume":"16","author":"BM Ellingson","year":"2014","unstructured":"Ellingson BM, Wen PY, van den Bent MJ, Cloughesy TF: Pros and cons of current brain tumor imaging. Neuro Oncol 16(Suppl 7):vii2\u2013vi11, 2014","journal-title":"Neuro Oncol"},{"key":"9_CR3","first-page":"179","volume":"15","author":"L Weizman","year":"2012","unstructured":"Weizman L, Ben-Sira L, Joskowicz L, Aizenstein O, Shofty B, Constantini S, Ben-Bashat D: Prediction of brain MR scans in longitudinal tumor follow-up studies. Med Image Comput Comput Assist Interv 15:179\u2013187, 2012","journal-title":"Med Image Comput Comput Assist Interv"},{"key":"9_CR4","doi-asserted-by":"publisher","first-page":"490","DOI":"10.1148\/radiol.2472070898","volume":"247","author":"M Law","year":"2008","unstructured":"Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, Miller DC, Golfinos JG, Zagzag D, Johnson G: Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490\u2013498, 2008","journal-title":"Radiology"},{"key":"9_CR5","doi-asserted-by":"publisher","first-page":"484","DOI":"10.1148\/radiol.14131691","volume":"272","author":"R Jain","year":"2014","unstructured":"Jain R, Poisson LM, Gutman D et al.: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272:484\u2013493, 2014","journal-title":"Radiology"},{"key":"9_CR6","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1007\/s10689-013-9607-1","volume":"12","author":"K Zhang","year":"2013","unstructured":"Zhang K, Wang X-Q, Zhou B, Zhang L: The prognostic value of MGMT promoter methylation in glioblastoma multiforme: a meta-analysis. Fam Cancer 12:449\u2013458, 2013","journal-title":"Fam Cancer"},{"key":"9_CR7","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1016\/j.clineuro.2016.10.004","volume":"151","author":"H Li","year":"2016","unstructured":"Li H, Li J, Cheng G, Zhang J, Li X: IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin Neurol Neurosurg 151:31\u201336, 2016","journal-title":"Clin Neurol Neurosurg"},{"key":"9_CR8","doi-asserted-by":"publisher","first-page":"116","DOI":"10.1093\/neuonc\/nop020","volume":"12","author":"AL Rivera","year":"2010","unstructured":"Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, Bekele BN, Aldape KD: MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 12:116\u2013121, 2010","journal-title":"Neuro Oncol"},{"key":"9_CR9","doi-asserted-by":"publisher","first-page":"506","DOI":"10.1007\/s11910-014-0506-0","volume":"15","author":"BM Ellingson","year":"2015","unstructured":"Ellingson BM: Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep 15:506, 2015","journal-title":"Curr Neurol Neurosci Rep"},{"key":"9_CR10","doi-asserted-by":"publisher","first-page":"92","DOI":"10.1002\/jmrs.103","volume":"62","author":"D Rundle-Thiele","year":"2015","unstructured":"Rundle-Thiele D, Day B, Stringer B et al.: Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method. J Med Radiat Sci 62:92\u201398, 2015","journal-title":"J Med Radiat Sci"},{"key":"9_CR11","doi-asserted-by":"publisher","first-page":"1398","DOI":"10.1016\/j.neuroimage.2009.09.049","volume":"49","author":"S Drabycz","year":"2010","unstructured":"Drabycz S, Rold\u00e1n G, de Robles P, Adler D, McIntyre JB, Magliocco AM, Cairncross JG, Mitchell JR: An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 49:1398\u20131405, 2010","journal-title":"Neuroimage"},{"key":"9_CR12","doi-asserted-by":"crossref","unstructured":"Levner I, Drabycz S, Roldan G, De Robles P, Gregory Cairncross J, Mitchell R: Predicting MGMT Methylation Status of Glioblastomas from MRI Texture. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):522\u2013530","DOI":"10.1007\/978-3-642-04271-3_64"},{"key":"9_CR13","doi-asserted-by":"publisher","first-page":"555","DOI":"10.1007\/s00234-011-0947-y","volume":"54","author":"W-J Moon","year":"2012","unstructured":"Moon W-J, Choi JW, Roh HG, Lim SD, Koh Y-C: Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 54:555\u2013563, 2012","journal-title":"Neuroradiology"},{"key":"9_CR14","doi-asserted-by":"publisher","first-page":"367","DOI":"10.3171\/2014.5.JNS132279","volume":"121","author":"SS Ahn","year":"2014","unstructured":"Ahn SS, Shin N-Y, Chang JH, Kim SH, Kim EH, Kim DW, Lee S-K: Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg 121:367\u2013373, 2014","journal-title":"J Neurosurg"},{"key":"9_CR15","doi-asserted-by":"publisher","first-page":"641","DOI":"10.1007\/s00234-011-0970-z","volume":"54","author":"A Gupta","year":"2012","unstructured":"Gupta A, Omuro AMP, Shah AD, Graber JJ, Shi W, Zhang Z, Young RJ: Continuing the search for MR imaging biomarkers for MGMT promoter methylation status: conventional and perfusion MRI revisited. Neuroradiology 54:641\u2013643, 2012","journal-title":"Neuroradiology"},{"key":"9_CR16","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1016\/j.cmpb.2016.12.018","volume":"140","author":"VG Kanas","year":"2017","unstructured":"Kanas VG, Zacharaki EI, Thomas GA, Zinn PO, Megalooikonomou V, Colen RR: Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput Methods Programs Biomed 140:249\u2013257, 2017","journal-title":"Comput Methods Programs Biomed"},{"key":"9_CR17","doi-asserted-by":"publisher","first-page":"2835","DOI":"10.1118\/1.4948668","volume":"43","author":"P Korfiatis","year":"2016","unstructured":"Korfiatis P, Kline TL, Coufalova L, Lachance DH, Parney IF, Carter RE, Buckner JC, Erickson BJ: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43:2835, 2016","journal-title":"Med Phys"},{"key":"9_CR18","doi-asserted-by":"publisher","first-page":"2499","DOI":"10.1056\/NEJMoa1407279","volume":"372","author":"JE Eckel-Passow","year":"2015","unstructured":"Eckel-Passow JE, Lachance DH, Molinaro AM et al.: Glioma groups based on 1p\/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499\u20132508, 2015","journal-title":"N Engl J Med"},{"key":"9_CR19","doi-asserted-by":"publisher","first-page":"1153","DOI":"10.1109\/TMI.2016.2553401","volume":"35","author":"H Greenspan","year":"2016","unstructured":"Greenspan H, van Ginneken B, Summers RM: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35:1153\u20131159, 2016","journal-title":"IEEE Trans Med Imaging"},{"key":"9_CR20","doi-asserted-by":"publisher","first-page":"1207","DOI":"10.1109\/TMI.2016.2535865","volume":"35","author":"M Anthimopoulos","year":"2016","unstructured":"Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35:1207\u20131216, 2016","journal-title":"IEEE Trans Med Imaging"},{"key":"9_CR21","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1002\/mp.12079","volume":"44","author":"MU Dalm\u0131\u015f","year":"2017","unstructured":"Dalm\u0131\u015f MU, Litjens G, Holland K, Setio A, Mann R, Karssemeijer N, Gubern-M\u00e9rida A: Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med Phys 44:533\u2013546, 2017","journal-title":"Med Phys"},{"key":"9_CR22","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1016\/j.media.2017.01.009","volume":"37","author":"N Dhungel","year":"2017","unstructured":"Dhungel N, Carneiro G, Bradley AP: A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal 37:114\u2013128, 2017","journal-title":"Med Image Anal"},{"key":"9_CR23","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1016\/j.media.2016.10.010","volume":"36","author":"C Spampinato","year":"2017","unstructured":"Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R: Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41\u201351, 2017","journal-title":"Med Image Anal"},{"key":"9_CR24","doi-asserted-by":"publisher","unstructured":"Yan Z, Zhan Y, Zhang S, Metaxas D, Zhou XS: Multi-Instance Multi-Stage Deep Learning for Medical Image Recognition. IEEE Transactions On Medical Imaging. doi:\n 10.1109\/TMI.2016.2524985","DOI":"10.1109\/TMI.2016.2524985"},{"key":"9_CR25","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1007\/s10278-016-9914-9","volume":"30","author":"A Rajkomar","year":"2017","unstructured":"Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J: High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging 30:95\u2013101, 2017","journal-title":"J Digit Imaging"},{"key":"9_CR26","doi-asserted-by":"publisher","first-page":"1461","DOI":"10.1148\/rg.2015140031","volume":"35","author":"PD Korfiatis","year":"2015","unstructured":"Korfiatis PD, Kline TL, Blezek DJ, Langer SG, Ryan WJ, Erickson BJ: MIRMAID: a content management system for medical image analysis research. Radiographics 35:1461\u20131468, 2015","journal-title":"Radiographics"},{"key":"9_CR27","doi-asserted-by":"publisher","first-page":"1310","DOI":"10.1109\/TMI.2010.2046908","volume":"29","author":"NJ Tustison","year":"2010","unstructured":"Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC: N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310\u20131320, 2010","journal-title":"IEEE Trans Med Imaging"},{"key":"9_CR28","doi-asserted-by":"crossref","unstructured":"Juntu J, Sijbers J, Dyck D, Gielen J: Bias Field Correction for MRI Images. In: Advances in Soft Computing. Springer. pp 543\u2013551","DOI":"10.1007\/3-540-32390-2_64"},{"key":"9_CR29","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J: Deep Residual Learning for Image Recognition. arXiv [cs.CV]. 2015. \n https:\/\/arxiv.org\/abs\/1512.03385","DOI":"10.1109\/CVPR.2016.90"},{"key":"9_CR30","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J: Identity Mappings in Deep Residual Networks. In: Lecture Notes in Computer Science. 2016, pp 630\u2013645. \n https:\/\/link.springer.com\/chapter\/10.1007\/978-3-319-46493-0_38","DOI":"10.1007\/978-3-319-46493-0_38"},{"key":"9_CR31","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas. 2016, pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"key":"9_CR32","doi-asserted-by":"publisher","unstructured":"He K, Zhang X, Ren S, Sun J: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 I.E. International Conference on Computer Vision (ICCV), 2015. doi: \n 10.1109\/iccv.2015.123","DOI":"10.1109\/iccv.2015.123"},{"key":"9_CR33","unstructured":"loffe S, Szegedy C: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv [cs.LG]. 2015. \n https:\/\/arxiv.org\/abs\/1502.03167"},{"key":"9_CR34","doi-asserted-by":"publisher","first-page":"1895","DOI":"10.1162\/089976698300017197","volume":"10","author":"TG Dietterich","year":"1998","unstructured":"Dietterich TG: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895\u20131923, 1998 1998","journal-title":"Neural Comput"},{"key":"9_CR35","unstructured":"Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, Vol. 8 (1936), pp. 3\u201362 Key: citeulike:1778138"},{"key":"9_CR36","unstructured":"Veit A, Wilber M, Belongie S: Residual Networks Behave Like Ensembles of Relatively Shallow Networks. arXiv [cs.CV]. 2016. \n https:\/\/arxiv.org\/abs\/1605.06431"},{"key":"9_CR37","doi-asserted-by":"publisher","first-page":"1072","DOI":"10.1002\/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M","volume":"42","author":"LG Ny\u00fal","year":"1999","unstructured":"Ny\u00fal LG, Udupa JK: On standardizing the MR image intensity scale. Magn Reson Med 42:1072\u20131081, 1999","journal-title":"Magn Reson Med"}],"container-title":["Journal of Digital Imaging"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10278-017-0009-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-017-0009-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10278-017-0009-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,5,16]],"date-time":"2020-05-16T18:49:26Z","timestamp":1589654966000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10278-017-0009-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,8,7]]},"references-count":37,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2017,10]]}},"alternative-id":["9"],"URL":"https:\/\/doi.org\/10.1007\/s10278-017-0009-z","relation":{},"ISSN":["0897-1889","1618-727X"],"issn-type":[{"value":"0897-1889","type":"print"},{"value":"1618-727X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,8,7]]},"assertion":[{"value":"7 August 2017","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}