{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T15:51:01Z","timestamp":1723823461800},"reference-count":113,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2023,3,17]],"date-time":"2023-03-17T00:00:00Z","timestamp":1679011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,3,17]],"date-time":"2023-03-17T00:00:00Z","timestamp":1679011200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001782","name":"University of Melbourne","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100001782","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Knowl Inf Syst"],"published-print":{"date-parts":[[2023,7]]},"abstract":"Abstract<\/jats:title>In recent years, one of the most popular techniques in the computer vision community has been the deep learning technique. As a data-driven technique, deep model requires enormous amounts of accurately labelled training data, which is often inaccessible in many real-world applications. A data-space solution is Data Augmentation (DA), that can artificially generate new images out of original samples. Image augmentation strategies can vary by dataset, as different data types might require different augmentations to facilitate model training. However, the design of DA policies has been largely decided by the human experts with domain knowledge, which is considered to be highly subjective and error-prone. To mitigate such problem, a novel direction is to automatically learn the image augmentation policies from the given dataset using Automated Data Augmentation (AutoDA) techniques. The goal of AutoDA models is to find the optimal DA policies that can maximize the model performance gains. This survey discusses the underlying reasons of the emergence of AutoDA technology from the perspective of image classification. We identify three key components of a standard AutoDA model: a search space, a search algorithm and an evaluation function. Based on their architecture, we provide a systematic taxonomy of existing image AutoDA approaches. This paper presents the major works in AutoDA field, discussing their pros and cons, and proposing several potential directions for future improvements.<\/jats:p>","DOI":"10.1007\/s10115-023-01853-2","type":"journal-article","created":{"date-parts":[[2023,3,17]],"date-time":"2023-03-17T13:02:57Z","timestamp":1679058177000},"page":"2805-2861","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":16,"title":["A survey of automated data augmentation algorithms for deep learning-based image classification tasks"],"prefix":"10.1007","volume":"65","author":[{"given":"Zihan","family":"Yang","sequence":"first","affiliation":[]},{"given":"Richard O.","family":"Sinnott","sequence":"additional","affiliation":[]},{"given":"James","family":"Bailey","sequence":"additional","affiliation":[]},{"given":"Qiuhong","family":"Ke","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,17]]},"reference":[{"key":"1853_CR1","first-page":"1097","volume":"25","author":"A Krizhevsky","year":"2012","unstructured":"Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097\u20131105","journal-title":"Adv Neural Inf Process Syst"},{"key":"1853_CR2","doi-asserted-by":"crossref","unstructured":"Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1\u20139","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"1853_CR3","unstructured":"Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556"},{"key":"1853_CR4","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"issue":"7639","key":"1853_CR5","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1038\/nature21056","volume":"542","author":"A Esteva","year":"2017","unstructured":"Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115\u2013118","journal-title":"Nature"},{"issue":"5","key":"1853_CR6","doi-asserted-by":"publisher","first-page":"1285","DOI":"10.1109\/TMI.2016.2528162","volume":"35","author":"H-C Shin","year":"2016","unstructured":"Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285\u20131298","journal-title":"IEEE Trans Med Imaging"},{"issue":"5","key":"1853_CR7","doi-asserted-by":"publisher","first-page":"1058","DOI":"10.3390\/s19051058","volume":"19","author":"Y-Y Zheng","year":"2019","unstructured":"Zheng Y-Y, Kong J-L, Jin X-B, Wang X-Y, Su T-L, Zuo M (2019) Cropdeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 19(5):1058","journal-title":"Sensors"},{"key":"1853_CR8","doi-asserted-by":"publisher","first-page":"70","DOI":"10.1016\/j.compag.2018.02.016","volume":"147","author":"A Kamilaris","year":"2018","unstructured":"Kamilaris A, Prenafeta-Bold\u00fa FX (2018) Deep learning in agriculture: a survey. Comput Electron Agric 147:70\u201390","journal-title":"Comput Electron Agric"},{"key":"1853_CR9","doi-asserted-by":"crossref","unstructured":"Shijie J, Ping W, Peiyi J, Siping H (2017) Research on data augmentation for image classification based on convolution neural networks. In: 2017 Chinese automation congress (CAC), pp 4165\u20134170. IEEE","DOI":"10.1109\/CAC.2017.8243510"},{"key":"1853_CR10","doi-asserted-by":"publisher","first-page":"5858","DOI":"10.1109\/ACCESS.2017.2696121","volume":"5","author":"J Lemley","year":"2017","unstructured":"Lemley J, Bazrafkan S, Corcoran P (2017) Smart augmentation learning an optimal data augmentation strategy. IEEE Access 5:5858\u20135869","journal-title":"IEEE Access"},{"issue":"12","key":"1853_CR11","doi-asserted-by":"publisher","first-page":"3207","DOI":"10.1162\/NECO_a_00052","volume":"22","author":"DC Cire\u015fan","year":"2010","unstructured":"Cire\u015fan DC, Meier U, Gambardella LM, Schmidhuber J (2010) Deep, big, simple neural nets for handwritten digit recognition. Neural Comput 22(12):3207\u20133220","journal-title":"Neural Comput"},{"issue":"9","key":"1853_CR12","doi-asserted-by":"publisher","first-page":"1734","DOI":"10.1109\/TPAMI.2015.2496141","volume":"38","author":"A Dosovitskiy","year":"2015","unstructured":"Dosovitskiy A, Fischer P, Springenberg JT, Riedmiller M, Brox T (2015) Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Trans Pattern Anal Mach Intell 38(9):1734\u20131747","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"1853_CR13","unstructured":"Graham B (2014) Fractional max-pooling. arXiv preprint arXiv:1412.6071"},{"key":"1853_CR14","first-page":"1163","volume":"29","author":"M Sajjadi","year":"2016","unstructured":"Sajjadi M, Javanmardi M, Tasdizen T (2016) Regularization with stochastic transformations and perturbations for deep semi-supervised learning. Adv Neural Inf Process Syst 29:1163\u20131171","journal-title":"Adv Neural Inf Process Syst"},{"key":"1853_CR15","doi-asserted-by":"crossref","unstructured":"Rios A, Kavuluru R (2018) Few-shot and zero-shot multi-label learning for structured label spaces. In: Proceedings of the conference on empirical methods in natural language processing. Conference on empirical methods in natural language processing, vol. 2018, p 3132 . NIH Public Access","DOI":"10.18653\/v1\/D18-1352"},{"key":"1853_CR16","unstructured":"Bachman P, Hjelm RD, Buchwalter W (2019) Learning representations by maximizing mutual information across views. Adv Neural Inf Process Syst 32"},{"key":"1853_CR17","doi-asserted-by":"crossref","unstructured":"Paschali M, Simson W, Roy AG, Naeem MF, G\u00f6bl R, Wachinger C, Navab N (2019) Data augmentation with manifold exploring geometric transformations for increased performance and robustness. arXiv preprint arXiv:1901.04420","DOI":"10.1007\/978-3-030-20351-1_40"},{"issue":"3","key":"1853_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3386252","volume":"53","author":"Y Wang","year":"2020","unstructured":"Wang Y, Yao Q, Kwok JT, Ni LM (2020) Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surv (CSUR) 53(3):1\u201334","journal-title":"ACM Comput Surv (CSUR)"},{"key":"1853_CR19","unstructured":"Dao T, Gu A, Ratner A, Smith V, De\u00a0Sa C, R\u00e9 C (2019) A kernel theory of modern data augmentation. In: International conference on machine learning, pp 1528\u20131537. PMLR"},{"key":"1853_CR20","doi-asserted-by":"crossref","unstructured":"Cubuk ED, Zoph B, Mane D, Vasudevan V, Le QV (2019) Autoaugment: learning augmentation strategies from data. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 113\u2013123","DOI":"10.1109\/CVPR.2019.00020"},{"key":"1853_CR21","first-page":"6665","volume":"32","author":"S Lim","year":"2019","unstructured":"Lim S, Kim I, Kim T, Kim C, Kim S (2019) Fast autoaugment. Adv Neural Inf Process Syst 32:6665\u20136675","journal-title":"Adv Neural Inf Process Syst"},{"key":"1853_CR22","doi-asserted-by":"crossref","unstructured":"Hataya R, Zdenek J, Yoshizoe K, Nakayama H (2020) Faster autoaugment: learning augmentation strategies using backpropagation. In: European conference on computer vision, pp 1\u201316. Springer","DOI":"10.1007\/978-3-030-58595-2_1"},{"key":"1853_CR23","unstructured":"Ho D, Liang E, Chen X, Stoica I, Abbeel P (2019) Population based augmentation: efficient learning of augmentation policy schedules. In: International conference on machine learning, pp 2731\u20132741 . PMLR"},{"key":"1853_CR24","unstructured":"Tran T, Pham T, Carneiro G, Palmer L, Reid I (2017) A bayesian data augmentation approach for learning deep models. arXiv preprint arXiv:1710.10564"},{"key":"1853_CR25","unstructured":"DeVries T, Taylor GW (2017) Dataset augmentation in feature space. arXiv preprint arXiv:1702.05538"},{"key":"1853_CR26","doi-asserted-by":"crossref","unstructured":"Zoph B, Cubuk ED, Ghiasi G, Lin T-Y, Shlens J, Le QV (2020) Learning data augmentation strategies for object detection. In: European conference on computer vision, pp 566\u2013583. Springer","DOI":"10.1007\/978-3-030-58583-9_34"},{"key":"1853_CR27","unstructured":"Krizhevsky A, Hinton G, et al (2009) Learning multiple layers of features from tiny images"},{"key":"1853_CR28","doi-asserted-by":"crossref","unstructured":"Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248\u2013255 . Ieee","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"1853_CR29","unstructured":"Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng AY (2011) Reading digits in natural images with unsupervised feature learning"},{"key":"1853_CR30","unstructured":"Tian K, Lin C, Sun M, Zhou L, Yan J, Ouyang W (2020) Improving auto-augment via augmentation-wise weight sharing. arXiv preprint arXiv:2009.14737"},{"key":"1853_CR31","doi-asserted-by":"crossref","unstructured":"Cubuk ED, Zoph B, Shlens J, Le QV (2020) Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition workshops, pp 702\u2013703","DOI":"10.1109\/CVPRW50498.2020.00359"},{"issue":"11","key":"1853_CR32","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278\u20132324","journal-title":"Proc IEEE"},{"key":"1853_CR33","doi-asserted-by":"crossref","unstructured":"Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818\u20132826","DOI":"10.1109\/CVPR.2016.308"},{"key":"1853_CR34","first-page":"2672","volume":"27","author":"I Goodfellow","year":"2014","unstructured":"Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 27:2672\u20132680","journal-title":"Adv Neural Inf Process Syst"},{"key":"1853_CR35","unstructured":"Zoph B, Le QV (2016) Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578"},{"key":"1853_CR36","unstructured":"Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621"},{"key":"1853_CR37","doi-asserted-by":"crossref","unstructured":"Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779\u2013788","DOI":"10.1109\/CVPR.2016.91"},{"key":"1853_CR38","doi-asserted-by":"crossref","unstructured":"Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580\u2013587","DOI":"10.1109\/CVPR.2014.81"},{"key":"1853_CR39","doi-asserted-by":"crossref","unstructured":"Girshick R (2015) Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 1440\u20131448","DOI":"10.1109\/ICCV.2015.169"},{"key":"1853_CR40","unstructured":"Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst 28"},{"key":"1853_CR41","doi-asserted-by":"crossref","unstructured":"Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431\u20133440","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"1853_CR42","doi-asserted-by":"crossref","unstructured":"Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234\u2013241. Springer","DOI":"10.1007\/978-3-319-24574-4_28"},{"issue":"1","key":"1853_CR43","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40537-019-0197-0","volume":"6","author":"C Shorten","year":"2019","unstructured":"Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):1\u201348","journal-title":"J Big Data"},{"key":"1853_CR44","unstructured":"Zhang H, Cisse M, Dauphin YN, Lopez-Paz D (2017) mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412"},{"key":"1853_CR45","unstructured":"DeVries T, Taylor GW (2017) Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552"},{"key":"1853_CR46","unstructured":"Inoue H (2018) Data augmentation by pairing samples for images classification. arXiv preprint arXiv:1801.02929"},{"key":"1853_CR47","unstructured":"Bagherinezhad H, Horton M, Rastegari M, Farhadi A (2018) Label refinery: improving imagenet classification through label progression. arXiv preprint arXiv:1805.02641"},{"key":"1853_CR48","unstructured":"Umesh P (2012) Image processing in python. CSI Communications 23"},{"key":"1853_CR49","doi-asserted-by":"crossref","unstructured":"Zhong Z, Zheng L, Kang G, Li S, Yang Y (2020) Random erasing data augmentation. In: AAAI, pp 13001\u201313008","DOI":"10.1609\/aaai.v34i07.7000"},{"key":"1853_CR50","unstructured":"Sato I, Nishimura H, Yokoi K (2015) Apac: augmented pattern classification with neural networks. arXiv preprint arXiv:1505.03229"},{"key":"1853_CR51","unstructured":"Simard PY, Steinkraus D, Platt JC et al (2003) Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, vol. 3"},{"key":"1853_CR52","first-page":"3239","volume":"30","author":"AJ Ratner","year":"2017","unstructured":"Ratner AJ, Ehrenberg HR, Hussain Z, Dunnmon J, R\u00e9 C (2017) Learning to compose domain-specific transformations for data augmentation. Adv Neural Inf Process Syst 30:3239","journal-title":"Adv Neural Inf Process Syst"},{"key":"1853_CR53","unstructured":"Zhang X, Wang Q, Zhang J, Zhong Z (2019) Adversarial autoaugment. arXiv preprint arXiv:1912.11188"},{"key":"1853_CR54","doi-asserted-by":"crossref","unstructured":"Lin C, Guo M, Li C, Yuan X, Wu W, Yan J, Lin D, Ouyang W (2019) Online hyper-parameter learning for auto-augmentation strategy. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp 6579\u20136588","DOI":"10.1109\/ICCV.2019.00668"},{"issue":"3","key":"1853_CR55","doi-asserted-by":"publisher","first-page":"229","DOI":"10.1007\/BF00992696","volume":"8","author":"RJ Williams","year":"1992","unstructured":"Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach Learn 8(3):229\u2013256","journal-title":"Mach Learn"},{"key":"1853_CR56","unstructured":"Liu H, Simonyan K, Yang Y (2018) Darts: Differentiable architecture search. arXiv preprint arXiv:1806.09055"},{"key":"1853_CR57","doi-asserted-by":"crossref","unstructured":"Li Y, Hu G, Wang Y, Hospedales T, Robertson NM, Yang Y (2020) Dada: differentiable automatic data augmentation. arXiv preprint arXiv:2003.03780","DOI":"10.1007\/978-3-030-58542-6_35"},{"key":"1853_CR58","unstructured":"LingChen TC, Khonsari A, Lashkari A, Nazari MR, Sambee JS, Nascimento MA (2020) Uniformaugment: a search-free probabilistic data augmentation approach. arXiv preprint arXiv:2003.14348"},{"key":"1853_CR59","doi-asserted-by":"crossref","unstructured":"Wei L, Xiao A, Xie L, Zhang X, Chen X, Tian Q (2020) Circumventing outliers of autoaugment with knowledge distillation. In: Computer vision\u2013ECCV 2020: 16th European conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part III 16, pp 608\u2013625. Springer","DOI":"10.1007\/978-3-030-58580-8_36"},{"key":"1853_CR60","doi-asserted-by":"publisher","first-page":"624","DOI":"10.1016\/j.patrec.2020.08.024","volume":"138","author":"A Naghizadeh","year":"2020","unstructured":"Naghizadeh A, Abavisani M, Metaxas DN (2020) Greedy autoaugment. Pattern Recogn Lett 138:624\u2013630","journal-title":"Pattern Recogn Lett"},{"key":"1853_CR61","doi-asserted-by":"crossref","unstructured":"Niu T, Bansal M (2019) Automatically learning data augmentation policies for dialogue tasks. arXiv preprint arXiv:1909.12868","DOI":"10.18653\/v1\/D19-1132"},{"key":"1853_CR62","doi-asserted-by":"crossref","unstructured":"Gudovskiy D, Rigazio L, Ishizaka S, Kozuka K, Tsukizawa S (2021) Autodo: robust autoaugment for biased data with label noise via scalable probabilistic implicit differentiation. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 16601\u201316610","DOI":"10.1109\/CVPR46437.2021.01633"},{"key":"1853_CR63","doi-asserted-by":"publisher","first-page":"68","DOI":"10.1016\/j.neunet.2020.11.015","volume":"135","author":"A Naghizadeh","year":"2021","unstructured":"Naghizadeh A, Metaxas DN, Liu D (2021) Greedy auto-augmentation for n-shot learning using deep neural networks. Neural Netw 135:68\u201377","journal-title":"Neural Netw"},{"issue":"3","key":"1853_CR64","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211\u2013252","journal-title":"Int J Comput Vis"},{"key":"1853_CR65","unstructured":"Lin S, Yu T, Feng R, Li X, Jin X, Chen Z (2021) Local patch autoaugment with multi-agent collaboration. arXiv preprint arXiv:2103.11099"},{"key":"1853_CR66","unstructured":"Hu Z, Tan B, Salakhutdinov R, Mitchell T, Xing EP (2019) Learning data manipulation for augmentation and weighting. arXiv preprint arXiv:1910.12795"},{"key":"1853_CR67","unstructured":"Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green T, Dunning I, Simonyan K, et al (2017) Population based training of neural networks. arXiv preprint arXiv:1711.09846"},{"key":"1853_CR68","doi-asserted-by":"crossref","unstructured":"Terrell GR, Scott DW (1992) Variable kernel density estimation. Ann Stat 1236\u20131265","DOI":"10.1214\/aos\/1176348768"},{"key":"1853_CR69","unstructured":"Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531"},{"key":"1853_CR70","unstructured":"Jang E, Gu S, Poole B (2016) Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144"},{"issue":"1","key":"1853_CR71","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1007\/s10479-007-0176-2","volume":"153","author":"B Colson","year":"2007","unstructured":"Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization. Ann Oper Res 153(1):235\u2013256","journal-title":"Ann Oper Res"},{"key":"1853_CR72","first-page":"4780","volume":"33","author":"E Real","year":"2019","unstructured":"Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized evolution for image classifier architecture search. Proc AAAI Conf Artif Intell 33:4780\u20134789","journal-title":"Proc AAAI Conf Artif Intell"},{"key":"1853_CR73","unstructured":"Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(2)"},{"key":"1853_CR74","unstructured":"Mania H, Guy A, Recht B (2018) Simple random search provides a competitive approach to reinforcement learning. arXiv preprint arXiv:1803.07055"},{"key":"1853_CR75","unstructured":"Tarvainen A, Valpola H (2017) Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. arXiv preprint arXiv:1703.01780"},{"key":"1853_CR76","doi-asserted-by":"crossref","unstructured":"Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-weka: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, pp 847\u2013855","DOI":"10.1145\/2487575.2487629"},{"key":"1853_CR77","doi-asserted-by":"crossref","unstructured":"Xie C, Tan M, Gong B, Wang J, Yuille AL, Le QV (2020) Adversarial examples improve image recognition. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 819\u2013828","DOI":"10.1109\/CVPR42600.2020.00090"},{"key":"1853_CR78","unstructured":"Gontijo-Lopes R, Smullin SJ, Cubuk ED, Dyer E (2020) Affinity and diversity: quantifying mechanisms of data augmentation. arXiv preprint arXiv:2002.08973"},{"key":"1853_CR79","first-page":"195","volume":"96","author":"C Boutilier","year":"1996","unstructured":"Boutilier C (1996) Planning, learning and coordination in multiagent decision processes. TARK 96:195\u2013210 (Citeseer)","journal-title":"TARK"},{"key":"1853_CR80","doi-asserted-by":"crossref","unstructured":"Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618\u2013626","DOI":"10.1109\/ICCV.2017.74"},{"key":"1853_CR81","unstructured":"Bengio Y, L\u00e9onard N, Courville A (2013) Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432"},{"key":"1853_CR82","unstructured":"Oord Avd, Vinyals O, Kavukcuoglu K (2017) Neural discrete representation learning. arXiv preprint arXiv:1711.00937"},{"key":"1853_CR83","unstructured":"Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. Adv Neural Inf Process Syst 25"},{"key":"1853_CR84","first-page":"21321","volume":"33","author":"S Chen","year":"2020","unstructured":"Chen S, Dobriban E, Lee J (2020) A group-theoretic framework for data augmentation. Adv Neural Inf Process Syst 33:21321\u201321333","journal-title":"Adv Neural Inf Process Syst"},{"key":"1853_CR85","unstructured":"Franceschi L, Donini M, Frasconi P, Pontil M (2017) Forward and reverse gradient-based hyperparameter optimization. In: International conference on machine learning, pp 1165\u20131173. PMLR"},{"key":"1853_CR86","doi-asserted-by":"crossref","unstructured":"Wang X, Shrivastava A, Gupta A (2017) A-fast-rcnn: Hard positive generation via adversary for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2606\u20132615","DOI":"10.1109\/CVPR.2017.324"},{"key":"1853_CR87","doi-asserted-by":"crossref","unstructured":"Peng X, Tang Z, Yang F, Feris RS, Metaxas D (2018) Jointly optimize data augmentation and network training: adversarial data augmentation in human pose estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2226\u20132234","DOI":"10.1109\/CVPR.2018.00237"},{"key":"1853_CR88","doi-asserted-by":"crossref","unstructured":"Dong X, Yang Y (2019) Searching for a robust neural architecture in four gpu hours. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 1761\u20131770","DOI":"10.1109\/CVPR.2019.00186"},{"issue":"132","key":"1853_CR89","first-page":"1","volume":"21","author":"S Mohamed","year":"2020","unstructured":"Mohamed S, Rosca M, Figurnov M, Mnih A (2020) Monte carlo gradient estimation in machine learning. J Mach Learn Res 21(132):1\u201362","journal-title":"J Mach Learn Res"},{"key":"1853_CR90","unstructured":"Maddison CJ, Mnih A, Teh YW (2016) The concrete distribution: a continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712"},{"key":"1853_CR91","unstructured":"Grathwohl W, Choi D, Wu Y, Roeder G, Duvenaud D (2017) Backpropagation through the void: optimizing control variates for black-box gradient estimation. arXiv preprint arXiv:1711.00123"},{"key":"1853_CR92","unstructured":"Xie S, Zheng H, Liu C, Lin L (2018) Snas: stochastic neural architecture search. arXiv preprint arXiv:1812.09926"},{"key":"1853_CR93","unstructured":"Domingos P (2020) Every model learned by gradient descent is approximately a kernel machine. arXiv preprint arXiv:2012.00152"},{"key":"1853_CR94","doi-asserted-by":"crossref","unstructured":"Gudovskiy D, Hodgkinson A, Yamaguchi T, Tsukizawa S (2020) Deep active learning for biased datasets via fisher kernel self-supervision. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 9041\u20139049","DOI":"10.1109\/CVPR42600.2020.00906"},{"key":"1853_CR95","doi-asserted-by":"crossref","unstructured":"Terh\u00f6rst P, Kolf JN, Huber M, Kirchbuchner F, Damer N, Morales A, Fierrez J, Kuijper A (2021) A comprehensive study on face recognition biases beyond demographics. arXiv preprint arXiv:2103.01592","DOI":"10.1109\/TTS.2021.3111823"},{"issue":"3","key":"1853_CR96","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1145\/3446776","volume":"64","author":"C Zhang","year":"2021","unstructured":"Zhang C, Bengio S, Hardt M, Recht B, Vinyals O (2021) Understanding deep learning (still) requires rethinking generalization. Commun ACM 64(3):107\u2013115","journal-title":"Commun ACM"},{"key":"1853_CR97","doi-asserted-by":"crossref","unstructured":"Tanaka D, Ikami D, Yamasaki T, Aizawa K (2018) Joint optimization framework for learning with noisy labels. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5552\u20135560","DOI":"10.1109\/CVPR.2018.00582"},{"key":"1853_CR98","doi-asserted-by":"crossref","unstructured":"Yi K, Wu J (2019) Probabilistic end-to-end noise correction for learning with noisy labels. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 7017\u20137025","DOI":"10.1109\/CVPR.2019.00718"},{"key":"1853_CR99","unstructured":"Lorraine J, Vicol P, Duvenaud D (2020) Optimizing millions of hyperparameters by implicit differentiation. In: International conference on artificial intelligence and statistics, pp 1540\u20131552. PMLR"},{"key":"1853_CR100","unstructured":"Van\u00a0der Maaten L, Hinton G (2008) Visualizing data using T-SNE. J Mach Learn Res 9(11)"},{"key":"1853_CR101","doi-asserted-by":"publisher","first-page":"186126","DOI":"10.1109\/ACCESS.2019.2960566","volume":"7","author":"Y Yamada","year":"2019","unstructured":"Yamada Y, Iwamura M, Akiba T, Kise K (2019) Shakedrop regularization for deep residual learning. IEEE Access 7:186126\u2013186136","journal-title":"IEEE Access"},{"key":"1853_CR102","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: Computer vision\u2013ECCV 2016: 14th European conference, Amsterdam, The Netherlands, October 11\u201314, 2016, Proceedings, Part IV 14, pp 630\u2013645. Springer","DOI":"10.1007\/978-3-319-46493-0_38"},{"key":"1853_CR103","unstructured":"Gastaldi X (2017) Shake-shake regularization. arXiv preprint arXiv:1705.07485"},{"key":"1853_CR104","doi-asserted-by":"crossref","unstructured":"Zagoruyko S, Komodakis N (2016) Wide residual networks. arXiv preprint arXiv:1605.07146","DOI":"10.5244\/C.30.87"},{"key":"1853_CR105","doi-asserted-by":"crossref","unstructured":"Huang G, Liu Z, Van Der\u00a0Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700\u20134708","DOI":"10.1109\/CVPR.2017.243"},{"key":"1853_CR106","unstructured":"Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. In: International conference on machine learning, pp 6105\u20136114. PMLR"},{"key":"1853_CR107","doi-asserted-by":"crossref","unstructured":"Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132\u20137141","DOI":"10.1109\/CVPR.2018.00745"},{"key":"1853_CR108","doi-asserted-by":"crossref","unstructured":"Shin H-C, Orton M, Collins DJ, Doran S, Leach MO (2011) Autoencoder in time-series analysis for unsupervised tissues characterisation in a large unlabelled medical image dataset. In: 2011 10th international conference on machine learning and applications and workshops, vol 1, pp 259\u2013264. IEEE","DOI":"10.1109\/ICMLA.2011.38"},{"key":"1853_CR109","doi-asserted-by":"crossref","unstructured":"Reed CJ, Metzger S, Srinivas A, Darrell T, Keutzer K (2021) Selfaugment: automatic augmentation policies for self-supervised learning. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 2674\u20132683","DOI":"10.1109\/CVPR46437.2021.00270"},{"key":"1853_CR110","doi-asserted-by":"crossref","unstructured":"Chen Y, Li Y, Kong T, Qi L, Chu R, Li L, Jia J (2021) Scale-aware automatic augmentation for object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 9563\u20139572","DOI":"10.1109\/CVPR46437.2021.00944"},{"key":"1853_CR111","doi-asserted-by":"crossref","unstructured":"Ren S, Zhang J, Li L, Sun X, Zhou J (2021) Text autoaugment: aearning compositional augmentation policy for text classification. arXiv preprint arXiv:2109.00523","DOI":"10.18653\/v1\/2021.emnlp-main.711"},{"key":"1853_CR112","doi-asserted-by":"crossref","unstructured":"Rajavel R, Ravichandran SK, Harimoorthy K, Nagappan P, Gobichettipalayam KR (2022) Iot-based smart healthcare video surveillance system using edge computing. J Ambient Intell Humanized Comput, 1\u201313","DOI":"10.1007\/s12652-021-03157-1"},{"key":"1853_CR113","doi-asserted-by":"crossref","unstructured":"Rajavel R, Sundaramoorthy B, GR K, Ravichandran SK, Leelasankar K (2022) Cloud-enabled diabetic retinopathy prediction system using optimized deep belief network classifier. J Ambient Intell Humanized Comput 1\u20139","DOI":"10.1007\/s12652-022-04114-2"}],"container-title":["Knowledge and Information Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10115-023-01853-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10115-023-01853-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10115-023-01853-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,18]],"date-time":"2023-05-18T03:30:28Z","timestamp":1684380628000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10115-023-01853-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,17]]},"references-count":113,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2023,7]]}},"alternative-id":["1853"],"URL":"https:\/\/doi.org\/10.1007\/s10115-023-01853-2","relation":{},"ISSN":["0219-1377","0219-3116"],"issn-type":[{"value":"0219-1377","type":"print"},{"value":"0219-3116","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,3,17]]},"assertion":[{"value":"13 June 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 February 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 February 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 March 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}