{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:07:54Z","timestamp":1726762074231},"reference-count":36,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2020,8,13]],"date-time":"2020-08-13T00:00:00Z","timestamp":1597276800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,8,13]],"date-time":"2020-08-13T00:00:00Z","timestamp":1597276800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["No11471010, No11271367"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Knowl Inf Syst"],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1007\/s10115-020-01484-x","type":"journal-article","created":{"date-parts":[[2020,8,13]],"date-time":"2020-08-13T04:15:28Z","timestamp":1597292128000},"page":"3995-4027","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Fisher-regularized supervised and semi-supervised extreme learning machine"],"prefix":"10.1007","volume":"62","author":[{"given":"Jun","family":"Ma","sequence":"first","affiliation":[]},{"given":"Yakun","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Liming","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,8,13]]},"reference":[{"issue":"3","key":"1484_CR1","doi-asserted-by":"publisher","first-page":"799","DOI":"10.1109\/72.846750","volume":"11","author":"GB Huang","year":"2002","unstructured":"Huang GB, Chen YQ, Babri HA (2002) Classification ability of single hidden layer feedforward neural networks. IEEE Trans Neural Netw 11(3):799\u2013801","journal-title":"IEEE Trans Neural Netw"},{"key":"1484_CR2","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1038\/323533a0","volume":"323","author":"DE Rumelhart","year":"1986","unstructured":"Rumelhart DE (1986) Learning representations by back-propagating errors. Nature 323:533\u2013536","journal-title":"Nature"},{"issue":"6","key":"1484_CR3","doi-asserted-by":"publisher","first-page":"989","DOI":"10.1109\/72.329697","volume":"5","author":"MT Hagan","year":"1994","unstructured":"Hagan MT, Menhaj MB (1994) Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw 5(6):989\u2013993","journal-title":"IEEE Trans Neural Netw"},{"issue":"8","key":"1484_CR4","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1109\/97.511811","volume":"3","author":"ES Chng","year":"1996","unstructured":"Chng ES, Yang HH, Bos S (1996) Orthogonal least-squares learning algorithm with local adaptation process for the radial basis function networks. IEEE Signal Process Lett 3(8):253\u2013255","journal-title":"IEEE Signal Process Lett"},{"issue":"11","key":"1484_CR5","doi-asserted-by":"publisher","first-page":"2629","DOI":"10.1109\/TCSI.2012.2189060","volume":"59","author":"G Huang","year":"2012","unstructured":"Huang G, Song S, Wu C (2012) Orthogonal least squares algorithm for training cascade neural networks. IEEE Trans Circuits Syst I Regul Pap 59(11):2629\u20132637","journal-title":"IEEE Trans Circuits Syst I Regul Pap"},{"issue":"3","key":"1484_CR6","first-page":"273","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273\u2013297","journal-title":"Mach Learn"},{"issue":"6","key":"1484_CR7","first-page":"1564","volume":"8","author":"Vapnik","year":"2002","unstructured":"Vapnik Vladimir N (2002) The nature of statistical learning theory. IEEE Trans Neural Netw 8(6:1564\u20131564","journal-title":"IEEE Trans Neural Netw"},{"key":"1484_CR8","unstructured":"Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings 2004 IEEE International Joint Conference on Neural Networks. IEEE"},{"issue":"1","key":"1484_CR9","doi-asserted-by":"publisher","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","volume":"70","author":"GB Huang","year":"2006","unstructured":"Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489\u2013501","journal-title":"Neurocomputing"},{"issue":"4","key":"1484_CR10","doi-asserted-by":"publisher","first-page":"879","DOI":"10.1109\/TNN.2006.875977","volume":"17","author":"GB Huang","year":"2006","unstructured":"Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879\u2013892","journal-title":"IEEE Trans Neural Netw"},{"issue":"16","key":"1484_CR11","doi-asserted-by":"publisher","first-page":"2483","DOI":"10.1016\/j.neucom.2010.11.030","volume":"74","author":"Y Wang","year":"2011","unstructured":"Wang Y, Cao F, Yuan Y (2011) A study on effectiveness of extreme learning machine. Neurocomputing 74(16):2483\u20132490","journal-title":"Neurocomputing"},{"issue":"2","key":"1484_CR12","doi-asserted-by":"publisher","first-page":"513","DOI":"10.1109\/TSMCB.2011.2168604","volume":"42","author":"GB Huang","year":"2012","unstructured":"Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Syst Man Cybern Soc 42(2):513\u2013529","journal-title":"IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Syst Man Cybern Soc"},{"key":"1484_CR13","doi-asserted-by":"publisher","first-page":"106","DOI":"10.1016\/j.neucom.2016.04.071","volume":"261","author":"Z Wang","year":"2017","unstructured":"Wang Z, Zhao Y, Wang G (2017) Extreme learning machine for large-scale graph classification based on mapreduce. Neurocomputing 261:106\u2013114","journal-title":"Neurocomputing"},{"key":"1484_CR14","doi-asserted-by":"publisher","first-page":"176","DOI":"10.1016\/j.engappai.2016.04.003","volume":"53","author":"L Yang","year":"2016","unstructured":"Yang L, Zhang S (2016) A sparse extreme learning machine framework by continuous optimization algorithms and its application in pattern recognition. Eng Appl Artif Intell 53:176\u2013189","journal-title":"Eng Appl Artif Intell"},{"issue":"2","key":"1484_CR15","doi-asserted-by":"publisher","first-page":"291","DOI":"10.1007\/s00521-015-1874-3","volume":"27","author":"GG Wang","year":"2016","unstructured":"Wang GG, Lu M, Dong YQ, Zhao XJ (2016) Self-adaptive extreme learning machine. Neural Comput Appl 27(2):291\u2013303","journal-title":"Neural Comput Appl"},{"issue":"C","key":"1484_CR16","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1016\/j.patcog.2016.04.003","volume":"58","author":"Y Zhang","year":"2016","unstructured":"Zhang Y, Wu J, Cai Z, Zhang P, Chen L (2016) Memetic extreme learning machine. Pattern Recogn 58(C):135\u2013148","journal-title":"Pattern Recogn"},{"issue":"31","key":"1484_CR17","doi-asserted-by":"publisher","first-page":"4152","DOI":"10.1007\/s11434-014-0512-2","volume":"59","author":"XJ Ding","year":"2014","unstructured":"Ding XJ, Chang BF (2014) Active set strategy of optimized extreme learning machine. Sci Bull 59(31):4152\u20134160","journal-title":"Sci Bull"},{"key":"1484_CR18","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1016\/j.neucom.2010.02.019","volume":"74","author":"GB Huang","year":"2010","unstructured":"Huang GB, Ding XJ, Zhou HM (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74:155\u2013163","journal-title":"Neurocomputing"},{"issue":"7","key":"1484_CR19","doi-asserted-by":"publisher","first-page":"833","DOI":"10.1016\/0098-3004(96)00017-9","volume":"22","author":"JC Davis","year":"1996","unstructured":"Davis JC (1996) Introduction to statistical pattern recognition. Comput Geosci 22(7):833\u2013834","journal-title":"Comput Geosci"},{"key":"1484_CR20","doi-asserted-by":"crossref","unstructured":"Gupta H, Agrawal AK, Pruthi T, Shekhar C, Chellappa R (2002) An experimental evaluation of linear and kernel-based methods for face recognition. In: IEEE workshop on applications of computer vision. IEEE Computer Society, p 13","DOI":"10.1109\/ACV.2002.1182137"},{"key":"1484_CR21","first-page":"1455","volume":"3","author":"T Xiong","year":"2005","unstructured":"Xiong T, Cherkassky V (2005) A combined SVM and LDA approach for classification. IEEE Int Joint Conf Neural Netw 3:1455\u20131459","journal-title":"IEEE Int Joint Conf Neural Netw"},{"issue":"10","key":"1484_CR22","first-page":"1651","volume":"16","author":"S Zafeiriou","year":"2007","unstructured":"Zafeiriou S, Tefas A, Pitas I (2007) Minimum class variance support vector machines. IEEE Trans Image Process A Publ IEEE Signal Process Soc 16(10):1651","journal-title":"IEEE Trans Image Process A Publ IEEE Signal Process Soc"},{"issue":"6","key":"1484_CR23","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1016\/j.neucom.2012.11.023","volume":"110","author":"W An","year":"2013","unstructured":"An W, Liang M (2013) Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises. Neurocomputing 110(6):101\u2013110","journal-title":"Neurocomputing"},{"key":"1484_CR24","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1016\/j.ins.2016.01.053","volume":"343\u2013344","author":"L Zhang","year":"2016","unstructured":"Zhang L, Zhou WD (2016) Fisher-regularized support vector machine. Inf Sci 343\u2013344:79\u201393","journal-title":"Inf Sci"},{"issue":"11","key":"1484_CR25","doi-asserted-by":"publisher","first-page":"1968","DOI":"10.1109\/TCSVT.2013.2269774","volume":"23","author":"A Iosifidis","year":"2013","unstructured":"Iosifidis A, Tefas A, Pitas I (2013) Minimum class variance extreme learning machine for human action recognition. IEEE Trans Circuits Syst Video Technol 23(11):1968\u20131979","journal-title":"IEEE Trans Circuits Syst Video Technol"},{"key":"1484_CR26","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2015.07.036","volume-title":"Sparse extreme learning machine classifier exploiting intrinsic graphs","author":"A Iosifidis","year":"2015","unstructured":"Iosifidis A, Tefas A, Pitas I (2015) Sparse extreme learning machine classifier exploiting intrinsic graphs. Elsevier, Amsterdam"},{"issue":"1","key":"1484_CR27","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1109\/TCYB.2015.2401973","volume":"46","author":"A Iosifidis","year":"2016","unstructured":"Iosifidis A, Tefas A, Pitas I (2016) Graph embedded extreme learning machine. IEEE Trans Cybern 46(1):311","journal-title":"IEEE Trans Cybern"},{"key":"1484_CR28","unstructured":"Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. JMLR.org"},{"issue":"1","key":"1484_CR29","first-page":"203","volume":"9","author":"O Chapelle","year":"2008","unstructured":"Chapelle O, Sindhwani V, Keerthi SS (2008) Optimization techniques for semi-supervised support vector machines. J Mach Learn Res 9(1):203\u2013233","journal-title":"J Mach Learn Res"},{"issue":"5","key":"1484_CR30","first-page":"1149","volume":"12","author":"S Melacci","year":"2009","unstructured":"Melacci S, Belkin M (2009) Laplacian support vector machines trained in the primal. J Mach Learn Res 12(5):1149\u20131184","journal-title":"J Mach Learn Res"},{"issue":"12","key":"1484_CR31","doi-asserted-by":"publisher","first-page":"2405","DOI":"10.1109\/TCYB.2014.2307349","volume":"44","author":"G Huang","year":"2014","unstructured":"Huang G, Song S, Gupta JND, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405","journal-title":"IEEE Trans Cybern"},{"issue":"18","key":"1484_CR32","first-page":"160","volume":"145","author":"A Iosifidis","year":"2014","unstructured":"Iosifidis A, Tefas A, Pitas I (2014) Regularized extreme learning machine for multi-view semi-supervised action recognition. Neurocomputing 145(18):160\u2013262","journal-title":"Neurocomputing"},{"issue":"PA","key":"1484_CR33","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1016\/j.neucom.2014.01.073","volume":"149","author":"Y Zhou","year":"2015","unstructured":"Zhou Y, Liu B, Xia S, Liu B (2015) Semi-supervised extreme learning machine with manifold and pairwise constraints regularization. Neurocomputing 149(PA):180\u2013186","journal-title":"Neurocomputing"},{"issue":"2","key":"1484_CR34","doi-asserted-by":"publisher","first-page":"255","DOI":"10.1007\/s00521-014-1777-8","volume":"27","author":"B Liu","year":"2016","unstructured":"Liu B, Xia SX, Meng FR, Zhou Y (2016) Manifold regularized extreme learning machine. Neural Comput Appl 27(2):255\u2013269","journal-title":"Neural Comput Appl"},{"key":"1484_CR35","doi-asserted-by":"publisher","first-page":"152","DOI":"10.1016\/j.knosys.2016.12.009","volume":"119","author":"H Pei","year":"2017","unstructured":"Pei H, Chen Y, Wu Y, Zhong P (2017) Laplacian total margin support vector machine based on within-class scatter. Knowl Based Syst 119:152\u2013165","journal-title":"Knowl Based Syst"},{"issue":"5","key":"1484_CR36","doi-asserted-by":"publisher","first-page":"1032","DOI":"10.1109\/72.788643","volume":"10","author":"OL Mangasarian","year":"1999","unstructured":"Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Netw 10(5):1032\u20137","journal-title":"IEEE Trans Neural Netw"}],"container-title":["Knowledge and Information Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10115-020-01484-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10115-020-01484-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10115-020-01484-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,8,13]],"date-time":"2021-08-13T00:58:12Z","timestamp":1628816292000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10115-020-01484-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,8,13]]},"references-count":36,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2020,10]]}},"alternative-id":["1484"],"URL":"https:\/\/doi.org\/10.1007\/s10115-020-01484-x","relation":{},"ISSN":["0219-1377","0219-3116"],"issn-type":[{"value":"0219-1377","type":"print"},{"value":"0219-3116","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,8,13]]},"assertion":[{"value":"13 June 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 June 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 August 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}