{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T10:08:17Z","timestamp":1724494097846},"reference-count":56,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2019,3,5]],"date-time":"2019-03-05T00:00:00Z","timestamp":1551744000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Knowl Inf Syst"],"published-print":{"date-parts":[[2020,2]]},"DOI":"10.1007\/s10115-019-01341-6","type":"journal-article","created":{"date-parts":[[2019,3,5]],"date-time":"2019-03-05T19:33:37Z","timestamp":1551814417000},"page":"423-455","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["Relevant feature selection and ensemble classifier design using bi-objective genetic algorithm"],"prefix":"10.1007","volume":"62","author":[{"given":"Asit Kumar","family":"Das","sequence":"first","affiliation":[]},{"given":"Soumen Kumar","family":"Pati","sequence":"additional","affiliation":[]},{"given":"Arka","family":"Ghosh","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,3,5]]},"reference":[{"issue":"2","key":"1341_CR1","doi-asserted-by":"publisher","first-page":"1059","DOI":"10.1631\/FITEE.1400398","volume":"16","author":"O Abbaszadeh","year":"2015","unstructured":"Abbaszadeh O, Amiri A, Khanteymoori AR (2015) An ensemble method for data stream classification in the presence of concept drift. Front Inf Technol Electron Eng 16(2):1059\u20131068","journal-title":"Front Inf Technol Electron Eng"},{"issue":"2","key":"1341_CR2","first-page":"422","volume":"10","author":"A Acharyya","year":"2013","unstructured":"Acharyya A, Rakshit S, Sarkar R, Basu S, Nasipuri M (2013) Handwritten word recognition using MLP based classifier: a holistic approach. IJCSI Int J Comput Sci Issues 10(2):422\u2013427","journal-title":"IJCSI Int J Comput Sci Issues"},{"key":"1341_CR3","unstructured":"Bache K, Lichman M (2013) UCI machine learning repository, p 901. \nhttp:\/\/archive.ics.uci.edu\/ml\n\n. Accessed 2013"},{"key":"1341_CR4","doi-asserted-by":"publisher","first-page":"104","DOI":"10.1016\/j.patrec.2013.12.008","volume":"40","author":"S Bandyopadhyay","year":"2014","unstructured":"Bandyopadhyay S, Bhadra T, Mitra P, Maulik U (2014) Integration of dense sub graph finding with feature clustering for unsupervised feature selection. Pattern Recogn Lett 40:104\u2013112","journal-title":"Pattern Recogn Lett"},{"key":"1341_CR5","first-page":"1","volume":"35","author":"E Bauer","year":"1998","unstructured":"Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 35:1\u201338","journal-title":"Mach Learn"},{"key":"1341_CR6","first-page":"734","volume":"2","author":"E Bernstein","year":"2005","unstructured":"Bernstein E, Amit Y (2005) Part-based statistical models for object classification and detection. Proc Comput Vis Pattern Recognit (CVPR) 2:734\u2013740","journal-title":"Proc Comput Vis Pattern Recognit (CVPR)"},{"key":"1341_CR7","doi-asserted-by":"crossref","unstructured":"Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data. In: 16th ACM SIGKDD international conference on knowledge discovery and Data mining, pp 333\u2013342","DOI":"10.1145\/1835804.1835848"},{"issue":"7","key":"1341_CR8","doi-asserted-by":"publisher","first-page":"817","DOI":"10.1016\/S0960-9822(02)00603-6","volume":"6","author":"G Chaconas","year":"1996","unstructured":"Chaconas G, Lavoie BD, Watson MA (1996) DNA transposition: jumping gene machine. Curr Biol 6(7):817\u2013820","journal-title":"Curr Biol"},{"issue":"1","key":"1341_CR9","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1016\/j.compeleceng.2013.11.024","volume":"40","author":"G Chandrashekar","year":"2014","unstructured":"Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16\u201328","journal-title":"Comput Electr Eng"},{"key":"1341_CR10","doi-asserted-by":"publisher","first-page":"219","DOI":"10.1186\/s12859-015-0629-6","volume":"16","author":"X Cheng","year":"2015","unstructured":"Cheng X, Cai H, Zhang Y, Xu B, Su W (2015) Optimal combination of feature selection and classification via local hyperplane based learning strategy. BMC Bioinform 16:219. \nhttps:\/\/doi.org\/10.1186\/s12859-015-0629-6","journal-title":"BMC Bioinform"},{"issue":"4","key":"1341_CR11","doi-asserted-by":"publisher","first-page":"300","DOI":"10.1631\/jzus.C1300250","volume":"15","author":"S Cheng","year":"2014","unstructured":"Cheng S, Chen M, Wai R, Wang F (2014) Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm. J Zhejiang Univ Sci 15(4):300\u2013311","journal-title":"J Zhejiang Univ Sci"},{"issue":"12","key":"1341_CR12","doi-asserted-by":"publisher","first-page":"3413","DOI":"10.1007\/s00500-014-1323-8","volume":"19","author":"B Cyganek","year":"2015","unstructured":"Cyganek B (2015) Hybrid ensemble of classifiers for logo and trademark symbols recognition. Soft Comput 19(12):3413\u20133430","journal-title":"Soft Comput"},{"key":"1341_CR13","doi-asserted-by":"publisher","first-page":"2279","DOI":"10.1016\/j.asoc.2010.08.008","volume":"11","author":"AK Das","year":"2011","unstructured":"Das AK, Sil J (2011) An efficient classifier design integrating rough set and set oriented database operations. Appl Soft Comput 11:2279\u20132285","journal-title":"Appl Soft Comput"},{"key":"1341_CR14","doi-asserted-by":"publisher","first-page":"116","DOI":"10.1016\/j.knosys.2017.02.013","volume":"123","author":"AK Das","year":"2017","unstructured":"Das AK, Das S, Ghosh A (2017) Ensemble feature selection using bi-objective genetic algorithm. Knowl Based Syst 123:116\u2013127","journal-title":"Knowl Based Syst"},{"issue":"2","key":"1341_CR15","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1109\/4235.996017","volume":"6","author":"K Deb","year":"2002","unstructured":"Deb K, Pratap A, Agarwal S, Meyarivan TA (2002) A fast and elitist multi objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182\u2013197","journal-title":"IEEE Trans Evol Comput"},{"issue":"2","key":"1341_CR16","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1023\/A:1007607513941","volume":"40","author":"TG Dietterich","year":"2000","unstructured":"Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization. Mach Learn 40(2):139\u2013157","journal-title":"Mach Learn"},{"issue":"2","key":"1341_CR17","doi-asserted-by":"publisher","first-page":"185","DOI":"10.1142\/S0219720005001004","volume":"3","author":"C Ding","year":"2005","unstructured":"Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3(2):185\u2013205","journal-title":"J Bioinform Comput Biol"},{"issue":"9","key":"1341_CR18","doi-asserted-by":"publisher","first-page":"e107801","DOI":"10.1371\/journal.pone.0107801","volume":"9","author":"V Fortino","year":"2014","unstructured":"Fortino V, Kinaret P, Fyhrquist N, Alenius H, Greco D (2014) A robust and accurate method for feature selection and prioritization from multi-class OMICs data. PLoS ONE 9(9):e107801. \nhttps:\/\/doi.org\/10.1371\/journal.pone.0107801","journal-title":"PLoS ONE"},{"key":"1341_CR19","unstructured":"Freund Y, Schapire R (1996) Experiments with new boosting algorithms. In: International conference on machine learning"},{"issue":"4","key":"1341_CR20","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1016\/j.asoc.2005.11.001","volume":"6","author":"B Gabrys","year":"2006","unstructured":"Gabrys B, Ruta D (2006) Genetic algorithms in classifier fusion. Appl Soft Comput 6(4):337\u2013347","journal-title":"Appl Soft Comput"},{"issue":"11","key":"1341_CR21","doi-asserted-by":"publisher","first-page":"3249","DOI":"10.1007\/s00500-014-1480-9","volume":"19","author":"F Gu","year":"2015","unstructured":"Gu F, Liu HL, Tan KC (2015) A hybrid evolutionary multi-objective optimization algorithm with adaptive multi-fitness assignment. Soft Comput 19(11):3249\u20133259","journal-title":"Soft Comput"},{"key":"1341_CR22","unstructured":"Hall AM (1999) Correlation-based feature selection for machine learning. The University of Waikato"},{"issue":"1","key":"1341_CR23","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M Hall","year":"2009","unstructured":"Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10\u201318","journal-title":"SIGKDD Explor"},{"issue":"7","key":"1341_CR24","doi-asserted-by":"publisher","first-page":"1373","DOI":"10.1007\/s00500-013-1150-3","volume":"18","author":"SY Jing","year":"2014","unstructured":"Jing SY (2014) A hybrid genetic algorithm for feature subset selection in rough set theory. Soft Comput 18(7):1373\u20131382","journal-title":"Soft Comput"},{"key":"1341_CR25","unstructured":"Kent Ridge Bio-medical Data Set Repository. \nhttp:\/\/datam.i2r.a-star.edu.sg\/datasets\/krbd\n\n. Accessed 2002"},{"key":"1341_CR26","unstructured":"Kerber R (1992) ChiMerge: discretization of numeric attributes. In: Tenth national conference on artificial intelligence, pp 123\u2013128"},{"issue":"2","key":"1341_CR27","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1504\/IJDMB.2015.069416","volume":"12","author":"S Kim","year":"2015","unstructured":"Kim S, Scalzo F, Telesca D, Hu X (2015) Ensemble of sparse classifiers for high-dimensional biological data. Int. J. Data Min Bioinform 12(2):167\u2013183","journal-title":"Int. J. Data Min Bioinform"},{"key":"1341_CR28","unstructured":"Knowles JD, Corne DW (2000) M-PAES: a memetic algorithm for multi-objective optimization. In: IEEE congress on evolutionary computation, pp 325\u2013332"},{"issue":"1","key":"1341_CR29","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1214\/aoms\/1177729694","volume":"22","author":"S Kullback","year":"1951","unstructured":"Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79\u201386","journal-title":"Ann Math Stat"},{"issue":"4","key":"1341_CR30","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1109\/4235.887233","volume":"4","author":"LI Kuncheva","year":"2000","unstructured":"Kuncheva LI, Jain LC (2000) Designing classifier fusion systems by genetic algorithms. IEEE Trans Evol Comput 4(4):327\u2013336","journal-title":"IEEE Trans Evol Comput"},{"issue":"4","key":"1341_CR31","doi-asserted-by":"publisher","first-page":"1106","DOI":"10.1109\/TCBB.2012.33","volume":"9","author":"C Lazar","year":"2012","unstructured":"Lazar C, Taminau J, Meganck S, Steenhoff D, Coletta A, Molter C, Schaetzen V, Duque R, Bersini H, Nowe A (2012) A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE ACM Trans Comput Biol Bioinform 9(4):1106\u20131119","journal-title":"IEEE ACM Trans Comput Biol Bioinform"},{"key":"1341_CR32","unstructured":"Laura EA, Santana A, Canuto MP (2012) Bi-objective genetic algorithm for feature selection in ensemble systems. In: Artificial neural networks and machine learning\u2014ICANN 2012. LNCS, vol 7552. Springer, Berlin, pp 701\u2013709"},{"key":"1341_CR33","unstructured":"Lehmann EL, Romano JP (2006) Testing statistical hypothese, vol 64, no 2. Springer, Berlin, pp 255\u2013256"},{"key":"1341_CR34","doi-asserted-by":"publisher","unstructured":"Ma X, Huo J, Wang Q (2010) A multi-objective genetic algorithm approach based on the uniform design metmod. In: International conference on computational intelligence and security, Nanning, pp 160\u2013164. \nhttps:\/\/doi.org\/10.1109\/cis.2010.43","DOI":"10.1109\/cis.2010.43"},{"issue":"12","key":"1341_CR35","doi-asserted-by":"publisher","first-page":"1885","DOI":"10.1016\/j.camwa.2003.07.011","volume":"47","author":"H Maaranen","year":"2004","unstructured":"Maaranen H, Miettinen K, Makela MM (2004) A quasi-random initial population for genetic algorithms. Comput Math Appl 47(12):1885\u20131895","journal-title":"Comput Math Appl"},{"issue":"3","key":"1341_CR36","doi-asserted-by":"publisher","first-page":"301","DOI":"10.1109\/34.990133","volume":"24","author":"P Mitra","year":"2002","unstructured":"Mitra P, Murthy CA, Pal SK (2002) Unsupervised feature selection using feature similarity. IEEE Trans Pattern Anal Mach Intell 24(3):301\u2013312","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"1341_CR37","unstructured":"Neumann JV (1996) Cellular automata. In: Burks AW (ed) Theory of self-reproducing automata. Chap. 2, University of Illinois Press, Champaign"},{"key":"1341_CR38","unstructured":"Oliveira LS, Sabourin R, Bortolozzi F, Suen CY (2003) Feature selection for ensembles: a hierarchical multi-objective genetic algorithm approach. In: Seventh international conference on document analysis and recognition-ICDAR, vol 2. IEEE Computer Society, Washington, p 676"},{"issue":"1","key":"1341_CR39","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1016\/S0377-2217(96)00382-7","volume":"99","author":"Z Pawlak","year":"1997","unstructured":"Pawlak Z (1997) Rough set approach to knowledge-based decision support. Eur J Oper Res 99(1):48\u201357","journal-title":"Eur J Oper Res"},{"key":"1341_CR40","volume-title":"Differential evolution: a practical approach to global optimization. Natural computing series","author":"K Price","year":"2005","unstructured":"Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Natural computing series. Springer, New York"},{"issue":"1\u20132","key":"1341_CR41","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10462-009-9124-7","volume":"33","author":"L Rokach","year":"2010","unstructured":"Rokach L (2010) Ensemble based classifiers. Artif Intell Rev 33(1\u20132):1\u201339","journal-title":"Artif Intell Rev"},{"issue":"5","key":"1341_CR42","doi-asserted-by":"publisher","first-page":"707","DOI":"10.1109\/TBME.2004.824139","volume":"51","author":"V Roth","year":"2004","unstructured":"Roth V, Lange T (2004) Bayesian class discovery in microarray dataset. IEEE Trans Biomed Eng 51(5):707\u2013718","journal-title":"IEEE Trans Biomed Eng"},{"issue":"4","key":"1341_CR43","doi-asserted-by":"publisher","first-page":"1622","DOI":"10.1016\/j.eswa.2013.08.059","volume":"41","author":"LS Santana","year":"2014","unstructured":"Santana LS, Canuto AM (2014) Filter-based optimization techniques for selection of feature subsets in ensemble systems. Expert Syst Appl 41(4):1622\u20131631","journal-title":"Expert Syst Appl"},{"issue":"5","key":"1341_CR44","doi-asserted-by":"publisher","first-page":"1651","DOI":"10.1214\/aos\/1024691352","volume":"26","author":"RE Schapire","year":"1998","unstructured":"Schapire RE, Freund Y, Bartlett P (1998) Boosting the margin: a new explanation for the effectiveness of voting method. Ann Stat 26(5):1651\u20131686","journal-title":"Ann Stat"},{"issue":"5","key":"1341_CR45","doi-asserted-by":"publisher","first-page":"1207","DOI":"10.1162\/089976600300015565","volume":"12","author":"AJ Sch\u00f6lkopf","year":"2000","unstructured":"Sch\u00f6lkopf AJ, Smola R, Bartlett P (2000) New support vector algorithms. Neural Comput 12(5):1207\u20131245","journal-title":"Neural Comput"},{"key":"1341_CR46","doi-asserted-by":"publisher","unstructured":"Stoorvogel AA, Saberi A (2014) On global external stochastic stabilization of linear systems with input saturation. In: American control conference, OR, pp 2972\u20132976. \nhttps:\/\/doi.org\/10.1109\/acc.2014.6858588","DOI":"10.1109\/acc.2014.6858588"},{"issue":"4","key":"1341_CR47","first-page":"613","volume":"5","author":"S Teli","year":"2015","unstructured":"Teli S, Kanikar P (2015) A survey on decision tree based approaches in data mining. Int J Adv Res Comput Sci Softw Eng 5(4):613\u2013617","journal-title":"Int J Adv Res Comput Sci Softw Eng"},{"issue":"15","key":"1341_CR48","first-page":"20","volume":"54","author":"AM Thandar","year":"2012","unstructured":"Thandar AM, Khaing MK (2012) Radial basis function (RBF) neural network classification based on consistency evaluation measure. Int J Comput Appl 54(15):20\u201323","journal-title":"Int J Comput Appl"},{"issue":"3","key":"1341_CR49","doi-asserted-by":"publisher","first-page":"440","DOI":"10.1109\/TEVC.2016.2608507","volume":"21","author":"A Trivedi","year":"2017","unstructured":"Trivedi A, Srinivasan D, Sanyal K, Ghosh A (2017) A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans Evol Comput 21(3):440\u2013462. \nhttps:\/\/doi.org\/10.1109\/TEVC.2016.2608507","journal-title":"IEEE Trans Evol Comput"},{"key":"1341_CR50","doi-asserted-by":"publisher","DOI":"10.1109\/TEVC.2014.2350987","author":"H Wang","year":"2014","unstructured":"Wang H, Jiao L, Yao X (2014) An improved two-archive algorithm for many-objective optimization. IEEE Trans Evolut Comput. \nhttps:\/\/doi.org\/10.1109\/TEVC.2014.2350987","journal-title":"IEEE Trans Evolut Comput"},{"issue":"8","key":"1341_CR51","doi-asserted-by":"publisher","first-page":"980","DOI":"10.1109\/TKDE.2004.29","volume":"16","author":"G Webb","year":"2004","unstructured":"Webb G, Zheng Z (2004) Multi-strategy ensemble learning: reducing error by combining ensemble learning techniques. IEEE Trans Knowl Data Eng 16(8):980\u2013991","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"1341_CR52","unstructured":"Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization. In: ICML, vol 97, pp 412\u2013420"},{"key":"1341_CR53","doi-asserted-by":"crossref","unstructured":"Yang P, Zhang Z (2007) Hybrid methods to select informative gene sets in microarray data classification. In: Proceedings of AI 2007. LNAI, vol 4830. Springer, Berlin, pp 811\u2013815","DOI":"10.1007\/978-3-540-76928-6_97"},{"issue":"6","key":"1341_CR54","doi-asserted-by":"publisher","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","volume":"11","author":"Q Zhang","year":"2007","unstructured":"Zhang Q, Li H (2007) MOEA\/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11(6):712\u2013731","journal-title":"IEEE Trans Evolut Comput"},{"issue":"1","key":"1341_CR55","first-page":"18","volume":"9","author":"Z Zhang","year":"2008","unstructured":"Zhang Z, Yang P (2008) An ensemble of classifiers with genetic algorithm based feature selection. IEEE Intell Inform Bull 9(1):18\u201324","journal-title":"IEEE Intell Inform Bull"},{"issue":"4","key":"1341_CR56","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1109\/4235.797969","volume":"3","author":"E Zitzler","year":"1999","unstructured":"Zitzler E, Thiele L (1999) Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257\u2013271","journal-title":"IEEE Trans Evol Comput"}],"container-title":["Knowledge and Information Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10115-019-01341-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10115-019-01341-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10115-019-01341-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,3,4]],"date-time":"2020-03-04T00:35:29Z","timestamp":1583282129000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10115-019-01341-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,3,5]]},"references-count":56,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2020,2]]}},"alternative-id":["1341"],"URL":"https:\/\/doi.org\/10.1007\/s10115-019-01341-6","relation":{},"ISSN":["0219-1377","0219-3116"],"issn-type":[{"value":"0219-1377","type":"print"},{"value":"0219-3116","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,3,5]]},"assertion":[{"value":"30 January 2017","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 January 2019","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 February 2019","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 March 2019","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with ethical standards"}},{"value":"The authors declare that there are no conflicts of interest in this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This article does not contain any studies with human participants performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}}]}}