{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,5]],"date-time":"2024-08-05T09:56:59Z","timestamp":1722851819761},"reference-count":43,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2011,12,23]],"date-time":"2011-12-23T00:00:00Z","timestamp":1324598400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Knowl Inf Syst"],"published-print":{"date-parts":[[2012,11]]},"DOI":"10.1007\/s10115-011-0469-2","type":"journal-article","created":{"date-parts":[[2011,12,22]],"date-time":"2011-12-22T08:58:31Z","timestamp":1324544311000},"page":"267-287","source":"Crossref","is-referenced-by-count":15,"title":["Dynamic classifier ensemble for positive unlabeled text stream classification"],"prefix":"10.1007","volume":"33","author":[{"given":"Shirui","family":"Pan","sequence":"first","affiliation":[]},{"given":"Yang","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xue","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2011,12,23]]},"reference":[{"issue":"16","key":"469_CR1","doi-asserted-by":"crossref","first-page":"2375","DOI":"10.1016\/j.patrec.2007.08.003","volume":"28","author":"B Calvo","year":"2005","unstructured":"Calvo B, Larranaga P, Lozano JA (2005) Learning bayesian classifiers from positive and unlabeled examples. Pattern Recognit Lett 28(16): 2375\u20132384","journal-title":"Pattern Recognit Lett"},{"issue":"1","key":"469_CR2","first-page":"70","volume":"38","author":"R Cheng","year":"2005","unstructured":"Cheng R, Kalashnikov D, Prabhakar S (2005) Learning from positive and unlabeled examples. Theor Comput Sci 38(1): 70\u201383","journal-title":"Theor Comput Sci"},{"issue":"11","key":"469_CR3","doi-asserted-by":"crossref","first-page":"2188","DOI":"10.1016\/j.patcog.2005.02.010","volume":"38","author":"L Didaci","year":"2005","unstructured":"Didaci L, Giacinto G, Roli F, Marcialis GL (2005) A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recognit 38(11): 2188\u20132191","journal-title":"Pattern Recognit"},{"key":"469_CR4","unstructured":"Dietterich TG (2002) Ensemble methods in machine learning. In: Proceedings of the first international workshop on multiple classifier systems, pp 1\u201315"},{"key":"469_CR5","doi-asserted-by":"crossref","unstructured":"Domingos P, Hulten G (2000) Mining high-speed data streams. In: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining(KDD\u201900). Boston, pp 71\u201380","DOI":"10.1145\/347090.347107"},{"key":"469_CR6","doi-asserted-by":"crossref","unstructured":"Fan W (2004) Systematic data selection to mine concept-drifting data streams. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD\u201904), ACM Press, pp 128\u2013137","DOI":"10.1145\/1014052.1014069"},{"key":"469_CR7","doi-asserted-by":"crossref","unstructured":"Fan W, Huang YA, Wang H, Yu PS (2004a) Active mining of data streams. In: Proceedings of the fourth SIAM international conference on data mining(SDM\u201904), pp 457\u2013461","DOI":"10.1137\/1.9781611972740.46"},{"key":"469_CR8","unstructured":"Fan W, Huang YA, Yu PS (2004b) Decision tree evolution using limited number of labeled data items from drifting data streams. In: Proceedings of the fourth IEEE international conference on data mining(ICDM\u201904), pp 379\u2013382"},{"issue":"1","key":"469_CR9","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1109\/TKDE.2006.16","volume":"18","author":"GPC Fung","year":"2006","unstructured":"Fung GPC, Yu JX, Lu H, Yu PS (2006) Text classification without negative examples revisit. IEEE Trans Knowl Data Eng 18(1): 6\u201320","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"469_CR10","doi-asserted-by":"crossref","unstructured":"Grossi V, Turini F (2010) Stream mining: a novel architecture for ensemble-based classification. Knowl Inf Syst: 1\u201335. doi: 10.1007\/s10115-011-0378-4","DOI":"10.1007\/s10115-011-0378-4"},{"issue":"4","key":"469_CR11","doi-asserted-by":"crossref","first-page":"401","DOI":"10.3233\/IDA-2007-11406","volume":"11","author":"S Huang","year":"2007","unstructured":"Huang S, Dong Y (2007) An active learning system for mining time-changing data streams. Intell Data Anal 11(4): 401\u2013419","journal-title":"Intell Data Anal"},{"key":"469_CR12","doi-asserted-by":"crossref","unstructured":"Hulten G, Spencer L, Domingos P (2001) Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining(KDD\u201901), pp 97\u2013106","DOI":"10.1145\/502512.502529"},{"key":"469_CR13","unstructured":"Klinkenberg R, Joachims T (2000) Detecting concept drift with support vector machines. In: Proceedings of the seventeenth international conference on machine learning(ICML\u201900), pp 487\u2013494"},{"key":"469_CR14","doi-asserted-by":"crossref","unstructured":"Koa A, Sabourina R, Britto A Jr (2008) From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit 41(5):1718\u20131731","DOI":"10.1016\/j.patcog.2007.10.015"},{"key":"469_CR15","unstructured":"Kolter JZ, Maloof MA (2003) Dynamic weighted majority: a new ensemble method for tracking concept drift. In: Proceedings of the third international conference on data mining (ICDM\u201903), pp 123\u2013130"},{"key":"469_CR16","first-page":"361","volume":"5","author":"DD Lewis","year":"2004","unstructured":"Lewis DD, Yang Y, Rose TG, Dietterich G, Li F, Li F (2004) RCV1: a new benchmark collection for text categorization research. J Mach Learn Res 5: 361\u2013397","journal-title":"J Mach Learn Res"},{"key":"469_CR17","doi-asserted-by":"crossref","unstructured":"Li C, Zhang Y, Li X (2009a) OcVFDT: one-class very fast decision tree for one-class classification of data streams. In: Proceedings of the third international workshop on knowledge discovery from sensor data. Paris, pp 79\u201386","DOI":"10.1145\/1601966.1601981"},{"key":"469_CR18","unstructured":"Li X, Liu B (2003) Learning to classify texts using positive and unlabeled data. In: International joint conference on artificial intelligence (IJCAI\u201903), pp 587\u2013594"},{"key":"469_CR19","doi-asserted-by":"crossref","unstructured":"Li X, Liu B (2005) Learning from positive and unlabeled examples with different data distributions. In: Proceedings of European conference on machine learning (ECML\u201905), pp 218\u2013229","DOI":"10.1007\/11564096_24"},{"key":"469_CR20","doi-asserted-by":"crossref","unstructured":"Li XL, Yu PS, Liu B, Ng SK (2009b) Positive unlabeled learning for data stream classification. In: Proceedings of the ninth SIAM international conference on data mining (SDM\u201909), pp 257\u2013268","DOI":"10.1137\/1.9781611972795.23"},{"key":"469_CR21","unstructured":"Liu B, Lee WS, Yu PS, Li X (2002) Partially supervised classification of text documents. In: Proceedings of the nineteenth international conference on machine learning (ICML\u201902)"},{"key":"469_CR22","doi-asserted-by":"crossref","unstructured":"Liu B, Dai Y, Li X, Lee WS, Yu PS (2003) Building text classifiers using positive and unlabeled examples. In: Proceedings of the third IEEE international conference on data mining (ICDM\u201903), pp 179\u2013186","DOI":"10.1109\/ICDM.2003.1250918"},{"key":"469_CR23","doi-asserted-by":"crossref","unstructured":"Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag 24(5):513\u2013523","DOI":"10.1016\/0306-4573(88)90021-0"},{"issue":"7","key":"469_CR24","doi-asserted-by":"crossref","first-page":"1443","DOI":"10.1162\/089976601750264965","volume":"13","author":"B Sch\u00f6lkopf","year":"2001","unstructured":"Sch\u00f6lkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13(7): 1443\u20131471","journal-title":"Neural Comput"},{"issue":"1","key":"469_CR25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/505282.505283","volume":"34","author":"F Sebastiani","year":"2002","unstructured":"Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv 34(1): 1\u201347","journal-title":"ACM Comput Surv"},{"key":"469_CR26","doi-asserted-by":"crossref","unstructured":"Street W, Kim Y (2001) A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the seventh international conference on knowledge discovery and data mining (KDD\u201901), pp 377\u2013382","DOI":"10.1145\/502512.502568"},{"issue":"1","key":"469_CR27","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.inffus.2006.11.002","volume":"9","author":"A Tsymbal","year":"2008","unstructured":"Tsymbal A, Pechenizkiy M, Cunningham P, Puuronen S (2008) Dynamic integration of classifiers for handling concept drift. Inf Fusion 9(1): 56\u201368","journal-title":"Inf Fusion"},{"key":"469_CR28","doi-asserted-by":"crossref","unstructured":"Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ninth international conference on knowledge discovery and data mining (KDD\u201903), pp 226\u2013235","DOI":"10.1145\/956750.956778"},{"key":"469_CR29","doi-asserted-by":"crossref","unstructured":"Widmer G, Kubat M (1993) Effective learning in dynamic environments by explicit context tracking. In: European conference on machine learning (ECML\u201993). Springer, Berlin, pp 227\u2013243","DOI":"10.1007\/3-540-56602-3_139"},{"issue":"1","key":"469_CR30","first-page":"69","volume":"23","author":"G Widmer","year":"1996","unstructured":"Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1): 69\u2013101","journal-title":"Mach Learn"},{"issue":"3","key":"469_CR31","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1109\/TKDE.2005.48","volume":"17","author":"D Widyantoro","year":"2005","unstructured":"Widyantoro D, Yen J (2005) Relevant data expansion for learning concept drift from sparsely labeled data. IEEE Trans Knowl Data Eng 17(3): 401\u2013412","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"4","key":"469_CR32","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1109\/34.588027","volume":"19","author":"K Woods","year":"1997","unstructured":"Woods K, Kegelmeyer WP Jr, Bowyer K (1997) Combination of multiple classifiers using local accuracy estimates. IEEE Trans Pattern Anal Mach Intell 19(4): 405\u2013410","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"469_CR33","doi-asserted-by":"crossref","unstructured":"Wozniak M (2010) A hybrid decision tree training method using data streams. Knowl Inf Syst: 1\u201313. doi: 10.1007\/s10115-010-0345-5","DOI":"10.1007\/s10115-010-0345-5"},{"key":"469_CR34","doi-asserted-by":"crossref","unstructured":"Wu S, Yang C, Zhou J (2006) Clustering-training for data stream mining. In: Proceedings of the sixth IEEE international conference on data mining workshops (ICDMW\u201906), pp 653\u2013656","DOI":"10.1109\/ICDMW.2006.45"},{"key":"469_CR35","doi-asserted-by":"crossref","unstructured":"Yu H, Han J, Chang KCC (2004) PEBL: web page classification without negative examples. IEEE Trans Knowl Data Eng 16(1):70\u201381","DOI":"10.1109\/TKDE.2004.1264823"},{"key":"469_CR36","doi-asserted-by":"crossref","unstructured":"Zhang B, Zuo W (2008) Learning from positive and unlabeled examples: a survey. In: International symposiums on information processing, IEEE Computer Society, Los Alamitos, pp 650\u2013654","DOI":"10.1109\/ISIP.2008.79"},{"key":"469_CR37","doi-asserted-by":"crossref","unstructured":"Zhang P, Zhu X, Shi Y (2008a) Categorizing and mining concept drifting data streams. In: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD\u201908). Las Vegas, pp 812\u2013820","DOI":"10.1145\/1401890.1401987"},{"issue":"3","key":"469_CR38","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1145\/1168092.1168096","volume":"35","author":"Y Zhang","year":"2006","unstructured":"Zhang Y, Jin X (2006) An automatic construction and organization strategy for ensemble learning on data streams. ACM SIGMOD Rec 35(3): 28\u201333","journal-title":"ACM SIGMOD Rec"},{"key":"469_CR39","doi-asserted-by":"crossref","unstructured":"Zhang Y, Li X, Orlowska M (2008b) One-class classification of text streams with concept drift. In: Proceedings of the 2008 IEEE international conference on data mining workshops (ICDMW\u201908), pp 116\u2013125","DOI":"10.1109\/ICDMW.2008.54"},{"issue":"1\u20132","key":"469_CR40","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/S0004-3702(02)00190-X","volume":"137","author":"ZH Zhou","year":"2002","unstructured":"Zhou ZH, Wu J, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell 137(1\u20132): 239\u2013263","journal-title":"Artif Intell"},{"issue":"3","key":"469_CR41","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1007\/s10115-005-0212-y","volume":"9","author":"X Zhu","year":"2006","unstructured":"Zhu X, Wu X, Yang Y (2006) Effective classification of noisy data streams with attribute-oriented dynamic classifier selection. Knowl Inf Syst 9(3): 339\u2013363","journal-title":"Knowl Inf Syst"},{"key":"469_CR42","doi-asserted-by":"crossref","unstructured":"Zhu X, Zhang P, Lin X, Shi Y (2007) Active learning from data streams. In: Proceedings of the seventh international conference on data mining (ICDM\u201907), pp 757\u2013762","DOI":"10.1109\/ICDM.2007.101"},{"key":"469_CR43","doi-asserted-by":"crossref","unstructured":"Zhu X, Ding W, Yu P, Zhang C (2010) One-class learning and concept summarization for data streams. Knowl Inf Syst: 1\u201331. http:\/\/dx.doi.org\/10.1007\/s10115-010-0331-y","DOI":"10.1007\/s10115-010-0331-y"}],"container-title":["Knowledge and Information Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10115-011-0469-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10115-011-0469-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10115-011-0469-2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,21]],"date-time":"2019-06-21T06:19:10Z","timestamp":1561097950000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10115-011-0469-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2011,12,23]]},"references-count":43,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2012,11]]}},"alternative-id":["469"],"URL":"https:\/\/doi.org\/10.1007\/s10115-011-0469-2","relation":{},"ISSN":["0219-1377","0219-3116"],"issn-type":[{"value":"0219-1377","type":"print"},{"value":"0219-3116","type":"electronic"}],"subject":[],"published":{"date-parts":[[2011,12,23]]}}}