{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,5]],"date-time":"2024-08-05T09:57:55Z","timestamp":1722851875845},"reference-count":45,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2009,4,24]],"date-time":"2009-04-24T00:00:00Z","timestamp":1240531200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Knowl Inf Syst"],"published-print":{"date-parts":[[2010,3]]},"DOI":"10.1007\/s10115-009-0206-2","type":"journal-article","created":{"date-parts":[[2009,4,23]],"date-time":"2009-04-23T10:14:19Z","timestamp":1240481659000},"page":"371-391","source":"Crossref","is-referenced-by-count":149,"title":["Tracking recurring contexts using ensemble classifiers: an application to email filtering"],"prefix":"10.1007","volume":"22","author":[{"given":"Ioannis","family":"Katakis","sequence":"first","affiliation":[]},{"given":"Grigorios","family":"Tsoumakas","sequence":"additional","affiliation":[]},{"given":"Ioannis","family":"Vlahavas","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2009,4,24]]},"reference":[{"key":"206_CR1","volume-title":"Data streams: models and algorithms","year":"2007","unstructured":"Aggarwal, C (eds) (2007) Data streams: models and algorithms. Springer, Heidelberg"},{"key":"206_CR2","unstructured":"Tsymbal A (2004) The problem of concept drift: definitions and related work. Technical report, Department of Computer Science Trinity College"},{"issue":"1","key":"206_CR3","first-page":"69","volume":"23","author":"G Widmer","year":"1996","unstructured":"Widmer G, Kubat M (1996) Learning in the presense of concept drift and hidden contexts. Mach Learn 23(1): 69\u2013101","journal-title":"Mach Learn"},{"issue":"2","key":"206_CR4","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1023\/A:1007420529897","volume":"32","author":"MB Harries","year":"1998","unstructured":"Harries MB, Sammut C, Horn K (1998) Extracting hidden context. Mach Learn 32(2): 101\u2013126","journal-title":"Mach Learn"},{"key":"206_CR5","doi-asserted-by":"crossref","unstructured":"Forman G (2006) Tackling concept drift by temporal inductive transfer. In: SIGIR \u201906: Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval. ACM Press, New York, pp 252\u2013259","DOI":"10.1145\/1148170.1148216"},{"key":"206_CR6","first-page":"39","volume-title":"Data streams, models and algorithms","author":"M Gaber","year":"2007","unstructured":"Gaber M, Zaslavsky A, Krishnaswamy S (2007) A survey of classification methods in data streams. In: Aggarwal C (eds) Data streams, models and algorithms. Springer, Heidelberg, pp 39\u201359"},{"issue":"2","key":"206_CR7","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1145\/507515.507519","volume":"3","author":"D Barbar\u00e1","year":"2002","unstructured":"Barbar\u00e1 D (2002) Requirements for clustering data streams. SIGKDD Explor 3(2): 23\u201327","journal-title":"SIGKDD Explor"},{"issue":"1","key":"206_CR8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10115-007-0092-4","volume":"16","author":"J Cheng","year":"2008","unstructured":"Cheng J, Ke Y, Ng W (2008) A survey on algorithms for mining frequent itemsets over data streams. Knowl Inform Syst 16(1): 1\u201327","journal-title":"Knowl Inform Syst"},{"key":"206_CR9","doi-asserted-by":"crossref","unstructured":"Kolter J, Maloof M (2003) Dynamic weighted majority: a new ensemble method for tracking concept drift. In: Proceedings of the Third IEEE international conference on data mining. IEEE Press, Los Alamitos, pp 123\u2013130","DOI":"10.1109\/ICDM.2003.1250911"},{"key":"206_CR10","doi-asserted-by":"crossref","unstructured":"Kolter JZ, Maloof MA (2005) Using additive expert ensembles to cope with concept drift. In: ICML \u201905: Proceedings of the 22nd international conference on machine learning. ACM Press, New York, pp 449\u2013456","DOI":"10.1145\/1102351.1102408"},{"key":"206_CR11","doi-asserted-by":"crossref","unstructured":"Wenerstrom B, Giraud-Carrier C (2006) Temporal data mining in dynamic feature spaces. IEEE Computer Society, Los Alamitos, pp 1141\u20131145","DOI":"10.1109\/ICDM.2006.157"},{"key":"206_CR12","doi-asserted-by":"crossref","unstructured":"Gama J, Medas P, Castillo G, Rodrigues PP (2004) Learning with drift detection. In: Bazzan ALC, Labidi S (eds) Advances in artificial intelligence. Proceedings of the 17th Brazilian symposium on artificial intelligence (SBIA 2004). Lecture notes in artificial intelligence, vol 3171. Springer, Brazil, pp 286\u2013295","DOI":"10.1007\/978-3-540-28645-5_29"},{"key":"206_CR13","first-page":"2755","volume":"8","author":"JZ Kolter","year":"2007","unstructured":"Kolter JZ, Maloof MA (2007) Dynamic weighted majority: an ensemble method for drifting concepts. J Mach Learn Res 8: 2755\u20132790","journal-title":"J Mach Learn Res"},{"key":"206_CR14","doi-asserted-by":"crossref","unstructured":"Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensembles classifiers. In: 9th ACM SIGKDD international conference on knowledge discovery and data mining. ACM Press, Washington, DC, pp 226\u2013235","DOI":"10.1007\/3-540-36175-8"},{"issue":"1","key":"206_CR15","first-page":"3","volume":"11","author":"RK Martin Scholz","year":"2007","unstructured":"Martin Scholz RK (2007) Boosting classifiers for drifting concepts. Intell Data Anal, Spec Issue Knowl Discovery from Data Streams 11(1): 3\u201328","journal-title":"Intell Data Anal, Spec Issue Knowl Discovery from Data Streams"},{"issue":"2","key":"206_CR16","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1007\/s10115-007-0070-x","volume":"15","author":"A Zhou","year":"2008","unstructured":"Zhou A, Cao F, Qian W, Jin C (2008) Tracking clusters in evolving data streams over sliding windows. Knowl Inform Syst 15(2): 181\u2013214","journal-title":"Knowl Inform Syst"},{"key":"206_CR17","unstructured":"O\u2019Callaghan L, Mishra N, Meyerson A, Guha S, Motwani R (2002) High-performance clustering of streams and large data sets. In: ICDE 2002"},{"key":"206_CR18","doi-asserted-by":"crossref","unstructured":"Aggarwal CC, Han J, Wang J, Yu PS (2004) A framework for projected clustering of high dimensional data streams. In: VLDB \u201904: Proceedings of the 30th international conference on very large data bases, VLDB Endowment, pp 852\u2013863","DOI":"10.1016\/B978-012088469-8.50075-9"},{"issue":"2","key":"206_CR19","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1145\/235968.233324","volume":"25","author":"T Zhang","year":"1996","unstructured":"Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. ACM SIGMOD Rec 25(2): 103\u2013114","journal-title":"ACM SIGMOD Rec"},{"key":"206_CR20","unstructured":"Klinkenberg R, Joachims T (2000) Detecting concept drift with support vector machines. In: ICML \u201900: Proceedings of the 17th international conference on machine learning. Morgan Kaufmann, San Francisco, pp 487\u2013494"},{"issue":"3","key":"206_CR21","doi-asserted-by":"crossref","first-page":"200","DOI":"10.3233\/IDA-2004-8305","volume":"8","author":"R Klinkenberg","year":"2004","unstructured":"Klinkenberg R (2004) Learning drifting concepts: example selection vs. example weighting. Intell Data Anal 8(3): 200\u2013281","journal-title":"Intell Data Anal"},{"key":"206_CR22","doi-asserted-by":"crossref","unstructured":"Fan W (2004) Systematic data selection to mine concept-drifting data streams. In: KDD \u201904: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Press, New York, pp 128\u2013137","DOI":"10.1145\/1014052.1014069"},{"issue":"4\u20135","key":"206_CR23","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.knosys.2004.10.002","volume":"18","author":"SJ Delany","year":"2005","unstructured":"Delany SJ, Padraig Cunningham ATLC (2005) A case-based technique for tracking concept drift in spam filtering. Knowl Based Syst 18(4\u20135): 187\u2013195","journal-title":"Knowl Based Syst"},{"key":"206_CR24","unstructured":"Street WN, Kim Y (2001) A streaming ensemble algorithm (SEA) for large-scale classification. In: 7th ACM SIGKDD international conference on knowledge discovery in data mining. ACM Press, pp 277\u2013382"},{"issue":"3","key":"206_CR25","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1007\/s10115-005-0212-y","volume":"9","author":"X Zhu","year":"2006","unstructured":"Zhu X, Wu X, Yang Y (2006) Effective classification of noisy data streams with attribute-oriented dynamic classifier selection. Knowl Inform Syst 9(3): 339\u2013363","journal-title":"Knowl Inform Syst"},{"key":"206_CR26","doi-asserted-by":"crossref","unstructured":"Spinosa EJ, Carvahlo Ad, Gama J (2007) OLINDDA: a cluster-based approach for detecting novelty and concept drift in data streams. In: 22nd annual acm symposium on applied computing. ACM Press, pp 448\u2013452","DOI":"10.1145\/1244002.1244107"},{"key":"206_CR27","doi-asserted-by":"crossref","unstructured":"Hulten G, Spence L, Domingos P (2001) Mining time-changing data streams. In: KDD \u201901: 7th ACM SIGKDD International conference on knowledge discovery and data mining. ACM Press, pp 97\u2013106","DOI":"10.1145\/502512.502529"},{"key":"206_CR28","volume-title":"Pattern classification","author":"RO Duda","year":"2000","unstructured":"Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley, New York"},{"key":"206_CR29","unstructured":"Asuncion A, Newman D (2007) UCI machine learning repository"},{"key":"206_CR30","unstructured":"Katakis I, Tsoumakas G, Vlahavas I (2006) Dynamic feature space and incremental feature selection for the classification of textual data streams. In: ECML\/PKDD-2006 international workshop on knowledge discovery from data stream, pp 107\u2013116"},{"issue":"1","key":"206_CR31","first-page":"1","volume":"39","author":"AP Dempster","year":"1977","unstructured":"Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodological) 39(1): 1\u201338","journal-title":"J R Stat Soc Ser B (Methodological)"},{"key":"206_CR32","unstructured":"Witten I, Frank E (2005) Data mining: practical machine learning tools and techniques. 2nd edn, San Francisco"},{"key":"206_CR33","unstructured":"John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: UAI \u201995: Proceedings of the 11th annual conference on uncertainty in artificial intelligence. Morgan Kaufman, Montreal, pp 338\u2013345"},{"issue":"2\u20133","key":"206_CR34","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1023\/A:1007413511361","volume":"29","author":"P Domingos","year":"1997","unstructured":"Domingos P, Pazzani MJ (1997) On the optimality of the simple bayesian classifier under zero-one loss. Mach Learn 29(2\u20133): 103\u2013130","journal-title":"Mach Learn"},{"issue":"1","key":"206_CR35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/505282.505283","volume":"34","author":"F Sebastiani","year":"2002","unstructured":"Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv 34(1): 1\u201347","journal-title":"ACM Comput Surv"},{"key":"206_CR36","unstructured":"Sahami M, Dumais S, Heckerman D, Horvitz E (1998) A bayesian approach to filtering junk e-mail. In: Learning for text categorization: papers from the 1998 Workshop, Madison, Wisconsin, AAAI Technical Report WS-98-05"},{"key":"206_CR37","unstructured":"Rennie J (2000) ifile: an application of machine learning to e-mail filtering. In: KDD-2000 workshop on text mining"},{"key":"206_CR38","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4757-2440-0","volume-title":"The nature of statistical learning theory","author":"V Vapnik","year":"1995","unstructured":"Vapnik V (1995) The nature of statistical learning theory. Springer, Heidelberg"},{"key":"206_CR39","first-page":"137","volume-title":"Proceedings of ECML-98, 10th European conference on machine learning. Number 1398","author":"T Joachims","year":"1998","unstructured":"Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. In: N\u00e9dellec C, Rouveirol C (eds) Proceedings of ECML-98, 10th European conference on machine learning. Number 1398. Springer, Heidelberg, pp 137\u2013142"},{"issue":"3","key":"206_CR40","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1007\/s10115-007-0107-1","volume":"16","author":"T Peng","year":"2008","unstructured":"Peng T, Zuo W, He F (2008) SVM based adaptive learning method for text classification from positive and unlabeled documents. Knowl Inform Syst 16(3): 281\u2013301","journal-title":"Knowl Inform Syst"},{"key":"206_CR41","doi-asserted-by":"crossref","unstructured":"Klimt B, Yang Y (2004) The enron corpus: a new dataset for email classification research. In: ECML 2004, 15th European conference on machine learning. Springer, Pisa, pp 217\u2013226","DOI":"10.1007\/978-3-540-30115-8_22"},{"key":"206_CR42","unstructured":"Rennie JD, Rifkn R (2001) Improving multiclass text classification with the support vector machine. Technical Report AIM-2001-026, Massachusetts Institute of Technology"},{"key":"206_CR43","doi-asserted-by":"crossref","unstructured":"Yang Y, Liu X (1999) A re-examination of text categorization methods. In: SIGIR \u201999: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. ACM Press, New York, pp 42\u201349","DOI":"10.1145\/312624.312647"},{"issue":"3","key":"206_CR44","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1016\/j.datak.2003.09.002","volume":"49","author":"G Tsoumakas","year":"2004","unstructured":"Tsoumakas G, Angelis L, Vlahavas I (2004) Clustering classifiers for knowledge discovery from physically distributed databases. Data Knowl Eng 49(3): 223\u2013242","journal-title":"Data Knowl Eng"},{"key":"206_CR45","doi-asserted-by":"crossref","unstructured":"Katakis I, Tsoumakas G, Banos E, Bassiliades N, Vlahavas I An adaptive personalized news dissemination system. J Intell Inform Syst 32:191\u2013212","DOI":"10.1007\/s10844-008-0053-8"}],"container-title":["Knowledge and Information Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10115-009-0206-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10115-009-0206-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10115-009-0206-2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,29]],"date-time":"2019-05-29T06:10:19Z","timestamp":1559110219000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10115-009-0206-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2009,4,24]]},"references-count":45,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2010,3]]}},"alternative-id":["206"],"URL":"https:\/\/doi.org\/10.1007\/s10115-009-0206-2","relation":{},"ISSN":["0219-1377","0219-3116"],"issn-type":[{"value":"0219-1377","type":"print"},{"value":"0219-3116","type":"electronic"}],"subject":[],"published":{"date-parts":[[2009,4,24]]}}}