{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:54:58Z","timestamp":1732042498809},"reference-count":60,"publisher":"Springer Science and Business Media LLC","issue":"1-2","license":[{"start":{"date-parts":[[2023,2,8]],"date-time":"2023-02-08T00:00:00Z","timestamp":1675814400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,2,8]],"date-time":"2023-02-08T00:00:00Z","timestamp":1675814400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["KA 1296\/24-2","KA 1296\/24-2"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Math. Program."],"published-print":{"date-parts":[[2023,9]]},"abstract":"Abstract<\/jats:title>We investigate finite-dimensional constrained structured optimization problems, featuring composite objective functions and set-membership constraints. Offering an expressive yet simple language, this problem class provides a modeling framework for a variety of applications. We study stationarity and regularity concepts, and propose a flexible augmented Lagrangian scheme. We provide a theoretical characterization of the algorithm and its asymptotic properties, deriving convergence results for fully nonconvex problems. It is demonstrated how the inner subproblems can be solved by off-the-shelf proximal methods, notwithstanding the possibility to adopt any solvers, insofar as they return approximate stationary points. Finally, we describe our matrix-free implementation of the proposed algorithm and test it numerically. Illustrative examples show the versatility of constrained composite programs as a modeling tool and expose difficulties arising in this vast problem class.<\/jats:p>","DOI":"10.1007\/s10107-022-01922-4","type":"journal-article","created":{"date-parts":[[2023,2,8]],"date-time":"2023-02-08T19:40:31Z","timestamp":1675885231000},"page":"863-896","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["Constrained composite optimization and augmented Lagrangian methods"],"prefix":"10.1007","volume":"201","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3545-6898","authenticated-orcid":false,"given":"Alberto","family":"De Marchi","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7134-2169","authenticated-orcid":false,"given":"Xiaoxi","family":"Jia","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2897-2509","authenticated-orcid":false,"given":"Christian","family":"Kanzow","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9355-850X","authenticated-orcid":false,"given":"Patrick","family":"Mehlitz","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,8]]},"reference":[{"issue":"4","key":"1922_CR1","doi-asserted-by":"publisher","first-page":"1286","DOI":"10.1137\/060654797","volume":"18","author":"R Andreani","year":"2008","unstructured":"Andreani, R., Birgin, E.G., Mart\u00ednez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18(4), 1286\u20131309 (2008). https:\/\/doi.org\/10.1137\/060654797","journal-title":"SIAM J. Optim."},{"issue":"2","key":"1922_CR2","doi-asserted-by":"publisher","first-page":"851","DOI":"10.1007\/s11075-021-01212-8","volume":"90","author":"R Andreani","year":"2022","unstructured":"Andreani, R., Haeser, G., Mito, L.M., Ramos, A., Secchin, L.D.: On the best achievable quality of limit points of augmented Lagrangian schemes. Numer. Algorithms 90(2), 851\u2013877 (2022). https:\/\/doi.org\/10.1007\/s11075-021-01212-8","journal-title":"Numer. Algorithms"},{"issue":"1","key":"1922_CR3","doi-asserted-by":"publisher","first-page":"96","DOI":"10.1137\/15M1008488","volume":"26","author":"R Andreani","year":"2016","unstructured":"Andreani, R., Mart\u00ednez, J.M., Ramos, A., Silva, P.J.S.: A cone-continuity constraint qualification and algorithmic consequences. SIAM J. Optim. 26(1), 96\u2013110 (2016). https:\/\/doi.org\/10.1137\/15M1008488","journal-title":"SIAM J. Optim."},{"key":"1922_CR4","unstructured":"Antil, H., Kouri, D.P., Ridzal, D.: ALESQP: An augmented Lagrangian equality-constrained SQP method for optimization with general constraints. http:\/\/www.optimization-online.org\/DB_HTML\/2021\/01\/8232.html (2020)"},{"issue":"5","key":"1922_CR5","doi-asserted-by":"publisher","first-page":"991","DOI":"10.1080\/10556788.2018.1528250","volume":"34","author":"P Armand","year":"2019","unstructured":"Armand, P., Tran, N.N.: Rapid infeasibility detection in a mixed logarithmic barrier-augmented Lagrangian method for nonlinear optimization. Optim. Methods Softw. 34(5), 991\u20131013 (2019). https:\/\/doi.org\/10.1080\/10556788.2018.1528250","journal-title":"Optim. Methods Softw."},{"key":"1922_CR6","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-00148-3","volume-title":"Disjunctive Programming","author":"E Balas","year":"2018","unstructured":"Balas, E.: Disjunctive Programming. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00148-3"},{"issue":"2","key":"1922_CR7","doi-asserted-by":"publisher","first-page":"330","DOI":"10.1287\/moor.2016.0817","volume":"42","author":"HH Bauschke","year":"2017","unstructured":"Bauschke, H.H., Bolte, J., Teboulle, M.: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. Math. Oper. Res. 42(2), 330\u2013348 (2017). https:\/\/doi.org\/10.1287\/moor.2016.0817","journal-title":"Math. Oper. Res."},{"key":"1922_CR8","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-9467-7","volume-title":"Convex Analysis and Monotone Operator Theory in Hilbert Spaces","author":"HH Bauschke","year":"2011","unstructured":"Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011). https:\/\/doi.org\/10.1007\/978-1-4419-9467-7"},{"key":"1922_CR9","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611974997","volume-title":"First-Order Methods in Optimization","author":"A Beck","year":"2017","unstructured":"Beck, A.: First-Order Methods in Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA (2017). https:\/\/doi.org\/10.1137\/1.9781611974997"},{"issue":"1","key":"1922_CR10","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1007\/s10107-018-1277-1","volume":"178","author":"A Beck","year":"2019","unstructured":"Beck, A., Hallak, N.: Optimization problems involving group sparsity terms. Math. Program. 178(1), 39\u201367 (2019). https:\/\/doi.org\/10.1007\/s10107-018-1277-1","journal-title":"Math. Program."},{"key":"1922_CR11","doi-asserted-by":"publisher","first-page":"7215","DOI":"10.46298\/jnsao-2021-7215","volume":"2","author":"M Benko","year":"2021","unstructured":"Benko, M., Mehlitz, P.: On implicit variables in optimization theory. J. Nonsmooth Anal. Optim. 2, 7215 (2021). https:\/\/doi.org\/10.46298\/jnsao-2021-7215","journal-title":"J. Nonsmooth Anal. Optim."},{"key":"1922_CR12","volume-title":"Constrained Optimization and Lagrange Multiplier Methods","author":"DP Bertsekas","year":"1996","unstructured":"Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, Nashua (1996)"},{"issue":"1","key":"1922_CR13","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1137\/141000671","volume":"59","author":"J Bezanson","year":"2017","unstructured":"Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to numerical computing. SIAM Rev. 59(1), 65\u201398 (2017). https:\/\/doi.org\/10.1137\/141000671","journal-title":"SIAM Rev."},{"issue":"3","key":"1922_CR14","doi-asserted-by":"publisher","first-page":"941","DOI":"10.1007\/s10589-011-9396-0","volume":"51","author":"EG Birgin","year":"2012","unstructured":"Birgin, E.G., Mart\u00ednez, J.M.: Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Comput. Optim. Appl. 51(3), 941\u2013965 (2012). https:\/\/doi.org\/10.1007\/s10589-011-9396-0","journal-title":"Comput. Optim. Appl."},{"key":"1922_CR15","doi-asserted-by":"crossref","DOI":"10.1137\/1.9781611973365","volume-title":"Practical Augmented Lagrangian Methods for Constrained Optimization","author":"EG Birgin","year":"2014","unstructured":"Birgin, E.G., Mart\u00ednez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA (2014)"},{"issue":"4","key":"1922_CR16","doi-asserted-by":"publisher","first-page":"2956","DOI":"10.1137\/19M1306804","volume":"30","author":"E B\u00f6rgens","year":"2020","unstructured":"B\u00f6rgens, E., Kanzow, C., Mehlitz, P., Wachsmuth, G.: New constraint qualifications for optimization problems in Banach spaces based on asymptotic KKT conditions. SIAM J. Optim. 30(4), 2956\u20132982 (2020). https:\/\/doi.org\/10.1137\/19M1306804","journal-title":"SIAM J. Optim."},{"issue":"2","key":"1922_CR17","doi-asserted-by":"publisher","first-page":"839","DOI":"10.1137\/120880045","volume":"24","author":"JV Burke","year":"2014","unstructured":"Burke, J.V., Curtis, F.E., Wang, H.: A sequential quadratic optimization algorithm with rapid infeasibility detection. SIAM J. Optim. 24(2), 839\u2013872 (2014). https:\/\/doi.org\/10.1137\/120880045","journal-title":"SIAM J. Optim."},{"key":"1922_CR18","doi-asserted-by":"publisher","first-page":"168","DOI":"10.1137\/15M1052834","volume":"55","author":"X Chen","year":"2017","unstructured":"Chen, X., Guo, L., Lu, Z., Ye, J.J.: An augmented Lagrangian method for non-Lipschitz nonconvex programming. SIAM J. Numer. Anal. 55, 168\u2013193 (2017). https:\/\/doi.org\/10.1137\/15M1052834","journal-title":"SIAM J. Numer. Anal."},{"key":"1922_CR19","first-page":"185","volume-title":"Proximal Splitting Methods in Signal Processing","author":"PL Combettes","year":"2011","unstructured":"Combettes, P.L., Pesquet, J.C.: Proximal Splitting Methods in Signal Processing, pp. 185\u2013212. Springer, New York (2011)"},{"issue":"2","key":"1922_CR20","doi-asserted-by":"publisher","first-page":"545","DOI":"10.1137\/0728030","volume":"28","author":"AR Conn","year":"1991","unstructured":"Conn, A.R., Gould, N.I.M., Toint, P.L.: A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28(2), 545\u2013572 (1991). https:\/\/doi.org\/10.1137\/0728030","journal-title":"SIAM J. Numer. Anal."},{"key":"1922_CR21","doi-asserted-by":"publisher","unstructured":"De\u00a0Marchi, A.: Constrained and sparse switching times optimization via augmented Lagrangian proximal methods. In: 2020 American Control Conference (ACC), pp. 3633\u20133638 (2020). https:\/\/doi.org\/10.23919\/ACC45564.2020.9147892","DOI":"10.23919\/ACC45564.2020.9147892"},{"key":"1922_CR22","doi-asserted-by":"publisher","unstructured":"De\u00a0Marchi, A.: Augmented Lagrangian and proximal methods for constrained structured optimization. Ph.D. thesis, Universit\u00e4t der Bundeswehr M\u00fcnchen (2021). https:\/\/doi.org\/10.5281\/zenodo.4972536","DOI":"10.5281\/zenodo.4972536"},{"key":"1922_CR23","doi-asserted-by":"publisher","first-page":"369","DOI":"10.1007\/s10589-021-00342-y","volume":"81","author":"A De Marchi","year":"2022","unstructured":"De Marchi, A.: On a primal-dual Newton proximal method for convex quadratic programs. Comput. Optim. Appl. 81, 369\u2013395 (2022). https:\/\/doi.org\/10.1007\/s10589-021-00342-y","journal-title":"Comput. Optim. Appl."},{"issue":"3","key":"1922_CR24","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1007\/s10957-022-02048-5","volume":"194","author":"A De Marchi","year":"2022","unstructured":"De Marchi, A., Themelis, A.: Proximal gradient algorithms under local Lipschitz gradient continuity. J. Optim. Theory Appl. 194(3), 771\u2013794 (2022). https:\/\/doi.org\/10.1007\/s10957-022-02048-5","journal-title":"J. Optim. Theory Appl."},{"issue":"7","key":"1922_CR25","doi-asserted-by":"publisher","first-page":"2861","DOI":"10.1109\/TAC.2018.2867589","volume":"64","author":"NK Dhingra","year":"2019","unstructured":"Dhingra, N.K., Khong, S.Z., Jovanovi\u0107, M.R.: The proximal augmented Lagrangian method for nonsmooth composite optimization. IEEE Trans. Autom. Control 64(7), 2861\u20132868 (2019). https:\/\/doi.org\/10.1109\/TAC.2018.2867589","journal-title":"IEEE Trans. Autom. Control"},{"key":"1922_CR26","doi-asserted-by":"publisher","unstructured":"Evens, B., Latafat, P., Themelis, A., Suykens, J., Patrinos, P.: Neural network training as an optimal control problem: An augmented Lagrangian approach. In: 60th IEEE Conference on Decision and Control (CDC), pp. 5136\u20135143 (2021). https:\/\/doi.org\/10.1109\/CDC45484.2021.9682842","DOI":"10.1109\/CDC45484.2021.9682842"},{"issue":"2","key":"1922_CR27","first-page":"273","volume":"14","author":"M Feng","year":"2018","unstructured":"Feng, M., Mitchell, J.E., Pang, J.S., Shen, X., W\u00e4chter, A.: Complementarity formulations of $$\\ell _0$$-norm optimization problems. Pac. J. Optim. 14(2), 273\u2013305 (2018)","journal-title":"Pac. J. Optim."},{"issue":"2","key":"1922_CR28","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1016\/j.orl.2006.03.008","volume":"35","author":"A Frangioni","year":"2007","unstructured":"Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class of nonseparable MIQP. Oper. Res. Lett. 35(2), 181\u2013185 (2007). https:\/\/doi.org\/10.1016\/j.orl.2006.03.008","journal-title":"Oper. Res. Lett."},{"key":"1922_CR29","unstructured":"Frangioni, A., Gentile, C.: The Mean-Variance portfolio problem. https:\/\/commalab.di.unipi.it\/datasets\/MV\/ (2021). Accessed 20 Sep 2022"},{"issue":"1","key":"1922_CR30","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10589-010-9339-1","volume":"51","author":"PE Gill","year":"2012","unstructured":"Gill, P.E., Robinson, D.P.: A primal\u2013dual augmented Lagrangian. Comput. Optim. Appl. 51(1), 1\u201325 (2012). https:\/\/doi.org\/10.1007\/s10589-010-9339-1","journal-title":"Comput. Optim. Appl."},{"issue":"2","key":"1922_CR31","doi-asserted-by":"publisher","first-page":"1546","DOI":"10.1093\/imanum\/draa021","volume":"41","author":"GN Grapiglia","year":"2020","unstructured":"Grapiglia, G.N., Yuan, Y.: On the complexity of an augmented Lagrangian method for nonconvex optimization. IMA J. Numer. Anal. 41(2), 1546\u20131568 (2020). https:\/\/doi.org\/10.1093\/imanum\/draa021","journal-title":"IMA J. Numer. Anal."},{"issue":"2","key":"1922_CR32","doi-asserted-by":"publisher","first-page":"1229","DOI":"10.1287\/moor.2021.1165","volume":"47","author":"L Guo","year":"2022","unstructured":"Guo, L., Deng, Z.: A new augmented Lagrangian method for MPCCs\u2014theoretical and numerical comparison with existing augmented Lagrangian methods. Math. Oper. Res. 47(2), 1229\u20131246 (2022). https:\/\/doi.org\/10.1287\/moor.2021.1165","journal-title":"Math. Oper. Res."},{"issue":"1","key":"1922_CR33","doi-asserted-by":"publisher","first-page":"571","DOI":"10.1007\/s10107-017-1112-0","volume":"168","author":"L Guo","year":"2018","unstructured":"Guo, L., Ye, J.J.: Necessary optimality conditions and exact penalization for non-Lipschitz nonlinear programs. Math. Program. 168(1), 571\u2013598 (2018). https:\/\/doi.org\/10.1007\/s10107-017-1112-0","journal-title":"Math. Program."},{"issue":"5","key":"1922_CR34","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1007\/BF00927673","volume":"4","author":"MR Hestenes","year":"1969","unstructured":"Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303\u2013320 (1969). https:\/\/doi.org\/10.1007\/BF00927673","journal-title":"J. Optim. Theory Appl."},{"key":"1922_CR35","unstructured":"IBM ILOG CPLEX: V12. 1: User\u2019s Manual for CPLEX. International Business Machines Corporation 46(53), 157 (2009)"},{"key":"1922_CR36","doi-asserted-by":"publisher","DOI":"10.1007\/s10107-022-01870-z","author":"X Jia","year":"2022","unstructured":"Jia, X., Kanzow, C., Mehlitz, P., Wachsmuth, G.: An augmented Lagrangian method for optimization problems with structured geometric constraints. Math. Program. (2022). https:\/\/doi.org\/10.1007\/s10107-022-01870-z","journal-title":"Math. Program."},{"issue":"2","key":"1922_CR37","doi-asserted-by":"publisher","first-page":"624","DOI":"10.1007\/s10957-022-02101-3","volume":"195","author":"C Kanzow","year":"2022","unstructured":"Kanzow, C., Mehlitz, P.: Convergence properties of monotone and nonmonotone proximal gradient methods revisited. J. Optim. Theory Appl. 195(2), 624\u2013646 (2022). https:\/\/doi.org\/10.1007\/s10957-022-02101-3","journal-title":"J. Optim. Theory Appl."},{"issue":"1","key":"1922_CR38","doi-asserted-by":"publisher","first-page":"272","DOI":"10.1137\/16M1107103","volume":"56","author":"C Kanzow","year":"2018","unstructured":"Kanzow, C., Steck, D., Wachsmuth, D.: An augmented Lagrangian method for optimization problems in Banach spaces. SIAM J. Control. Optim. 56(1), 272\u2013291 (2018). https:\/\/doi.org\/10.1137\/16M1107103","journal-title":"SIAM J. Control. Optim."},{"key":"1922_CR39","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1051\/cocv\/2022024","volume":"28","author":"AY Kruger","year":"2022","unstructured":"Kruger, A.Y., Mehlitz, P.: Optimality conditions, approximate stationarity, and applications\u2014a story beyond Lipschitzness. ESAIM: Control Optim. Calc. Var. 28, 42 (2022). https:\/\/doi.org\/10.1051\/cocv\/2022024","journal-title":"ESAIM: Control Optim. Calc. Var."},{"key":"1922_CR40","doi-asserted-by":"publisher","first-page":"503","DOI":"10.1007\/BF01589116","volume":"45","author":"DC Liu","year":"1989","unstructured":"Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503\u2013528 (1989). https:\/\/doi.org\/10.1007\/BF01589116","journal-title":"Math. Program."},{"key":"1922_CR41","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1007\/978-3-319-90026-1_8","volume-title":"Numerical Analysis and Optimization","author":"D Ma","year":"2018","unstructured":"Ma, D., Judd, K.L., Orban, D., Saunders, M.A.: Stabilized optimization via an NCL algorithm. In: Al-Baali, M., Grandinetti, L., Purnama, A. (eds.) Numerical Analysis and Optimization, pp. 173\u2013191. Springer, Berlin (2018). https:\/\/doi.org\/10.1007\/978-3-319-90026-1_8"},{"key":"1922_CR42","doi-asserted-by":"publisher","first-page":"6575","DOI":"10.46298\/jnsao-2020-6575","volume":"1","author":"P Mehlitz","year":"2020","unstructured":"Mehlitz, P.: Asymptotic stationarity and regularity for nonsmooth optimization problems. J. Nonsmooth Anal. Optim. 1, 6575 (2020). https:\/\/doi.org\/10.46298\/jnsao-2020-6575","journal-title":"J. Nonsmooth Anal. Optim."},{"key":"1922_CR43","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1007\/s10589-020-00169-z","volume":"76","author":"P Mehlitz","year":"2020","unstructured":"Mehlitz, P.: A comparison of first-order methods for the numerical solution of or-constrained optimization problems. Comput. Optim. Appl. 76, 233\u2013275 (2020). https:\/\/doi.org\/10.1007\/s10589-020-00169-z","journal-title":"Comput. Optim. Appl."},{"key":"1922_CR44","volume-title":"Variational Analysis and Generalized Differentiation, Part I: Basic Theory, Part II: Applications","author":"BS Mordukhovich","year":"2006","unstructured":"Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Part I: Basic Theory, Part II: Applications. Springer, Berlin (2006)"},{"key":"1922_CR45","doi-asserted-by":"publisher","unstructured":"Moreau, J.J.: Proximit\u00e9 et dualit\u00e9 dans un espace hilbertien. Bulletin de la Soci\u00e9t\u00e9 Math\u00e9matique de France 93, 273\u2013299 (1965). https:\/\/doi.org\/10.24033\/bsmf.1625","DOI":"10.24033\/bsmf.1625"},{"issue":"3","key":"1922_CR46","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1561\/2400000003","volume":"1","author":"N Parikh","year":"2014","unstructured":"Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127\u2013239 (2014). https:\/\/doi.org\/10.1561\/2400000003","journal-title":"Found. Trends Optim."},{"issue":"1","key":"1922_CR47","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1007\/s10107-020-01488-z","volume":"187","author":"A Potschka","year":"2021","unstructured":"Potschka, A., Bock, H.G.: A sequential homotopy method for mathematical programming problems. Math. Program. 187(1), 459\u2013486 (2021). https:\/\/doi.org\/10.1007\/s10107-020-01488-z","journal-title":"Math. Program."},{"key":"1922_CR48","first-page":"283","volume-title":"A Method for Nonlinear Constraints in Minimization Problems","author":"MJD Powell","year":"1969","unstructured":"Powell, M.J.D.: A Method for Nonlinear Constraints in Minimization Problems, pp. 283\u2013298. Academic Press, London (1969)"},{"issue":"2","key":"1922_CR49","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1287\/moor.1.2.97","volume":"1","author":"RT Rockafellar","year":"1976","unstructured":"Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97\u2013116 (1976). https:\/\/doi.org\/10.1287\/moor.1.2.97","journal-title":"Math. Oper. Res."},{"key":"1922_CR50","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-642-02431-3","volume-title":"Variational Analysis","author":"RT Rockafellar","year":"1998","unstructured":"Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Berlin (1998)"},{"key":"1922_CR51","unstructured":"Sager, S.: Numerical methods for mixed-integer optimal control problems. Ph.D. thesis, University of Heidelberg (2005). Interdisciplinary Center for Scientific Computing"},{"issue":"2","key":"1922_CR52","doi-asserted-by":"publisher","first-page":"353","DOI":"10.1007\/s10589-018-0010-6","volume":"71","author":"X Shen","year":"2018","unstructured":"Shen, X., Mitchell, J.E.: A penalty method for rank minimization problems in symmetric matrices. Comput. Optim. Appl. 71(2), 353\u2013380 (2018). https:\/\/doi.org\/10.1007\/s10589-018-0010-6","journal-title":"Comput. Optim. Appl."},{"issue":"2","key":"1922_CR53","doi-asserted-by":"publisher","first-page":"6548","DOI":"10.1016\/j.ifacol.2020.12.071","volume":"53","author":"P Sopasakis","year":"2020","unstructured":"Sopasakis, P., Fresk, E., Patrinos, P.: OpEn: Code generation for embedded nonconvex optimization. IFAC-PapersOnLine 53(2), 6548\u20136554 (2020). https:\/\/doi.org\/10.1016\/j.ifacol.2020.12.071. (21st IFAC World Congress)","journal-title":"IFAC-PapersOnLine"},{"key":"1922_CR54","volume-title":"Optimization for Machine Learning. Neural Information Processing Series","author":"S Sra","year":"2011","unstructured":"Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. Neural Information Processing Series. MIT Press, Cambridge (2011)"},{"key":"1922_CR55","unstructured":"Stella, L.: ProximalAlgorithms.jl: Proximal algorithms for nonsmooth optimization in Julia. https:\/\/github.com\/JuliaFirstOrder\/ProximalAlgorithms.jl"},{"key":"1922_CR56","doi-asserted-by":"publisher","unstructured":"Stella, L., Themelis, A., Sopasakis, P., Patrinos, P.: A simple and efficient algorithm for nonlinear model predictive control. In: 56th IEEE Conference on Decision and Control (CDC), pp. 1939\u20131944 (2017). https:\/\/doi.org\/10.1109\/CDC.2017.8263933","DOI":"10.1109\/CDC.2017.8263933"},{"issue":"10","key":"1922_CR57","doi-asserted-by":"publisher","first-page":"5407","DOI":"10.1109\/TAC.2017.2697681","volume":"62","author":"B Stellato","year":"2017","unstructured":"Stellato, B., Ober-Bl\u00f6baum, S., Goulart, P.J.: Second-order switching time optimization for switched dynamical systems. IEEE Trans. Autom. Control 62(10), 5407\u20135414 (2017). https:\/\/doi.org\/10.1109\/TAC.2017.2697681","journal-title":"IEEE Trans. Autom. Control"},{"key":"1922_CR58","unstructured":"Themelis, A.: Proximal algorithms for structured nonconvex optimization. Ph.D. thesis, KU Leuven, Arenberg Doctoral School, Faculty of Engineering Science (2018)"},{"issue":"3","key":"1922_CR59","doi-asserted-by":"publisher","first-page":"2274","DOI":"10.1137\/16M1080240","volume":"28","author":"A Themelis","year":"2018","unstructured":"Themelis, A., Stella, L., Patrinos, P.: Forward-backward envelope for the sum of two nonconvex functions: Further properties and nonmonotone linesearch algorithms. SIAM J. Optim. 28(3), 2274\u20132303 (2018). https:\/\/doi.org\/10.1137\/16M1080240","journal-title":"SIAM J. Optim."},{"key":"1922_CR60","doi-asserted-by":"publisher","DOI":"10.1017\/9781009004282","volume-title":"Optimization for Data Analysis","author":"SJ Wright","year":"2022","unstructured":"Wright, S.J., Recht, B.: Optimization for Data Analysis. Cambridge University Press, Cambridge (2022). https:\/\/doi.org\/10.1017\/9781009004282"}],"container-title":["Mathematical Programming"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10107-022-01922-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10107-022-01922-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10107-022-01922-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,25]],"date-time":"2023-07-25T19:12:24Z","timestamp":1690312344000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10107-022-01922-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,8]]},"references-count":60,"journal-issue":{"issue":"1-2","published-print":{"date-parts":[[2023,9]]}},"alternative-id":["1922"],"URL":"https:\/\/doi.org\/10.1007\/s10107-022-01922-4","relation":{},"ISSN":["0025-5610","1436-4646"],"issn-type":[{"value":"0025-5610","type":"print"},{"value":"1436-4646","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,2,8]]},"assertion":[{"value":"5 April 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 December 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 February 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}