{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:49:53Z","timestamp":1732042193343},"reference-count":43,"publisher":"Springer Science and Business Media LLC","issue":"1-2","license":[{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["DGE-1650441"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Math. Program."],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1007\/s10107-022-01910-8","type":"journal-article","created":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T15:23:58Z","timestamp":1669908238000},"page":"373-407","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["The landscape of the proximal point method for nonconvex\u2013nonconcave minimax optimization"],"prefix":"10.1007","volume":"201","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7003-8448","authenticated-orcid":false,"given":"Benjamin","family":"Grimmer","sequence":"first","affiliation":[]},{"given":"Haihao","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Pratik","family":"Worah","sequence":"additional","affiliation":[]},{"given":"Vahab","family":"Mirrokni","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,1]]},"reference":[{"key":"1910_CR1","doi-asserted-by":"crossref","unstructured":"Attouch, H., Aze, D., Wets, R.J.B.: On continuity properties of the partial Legendre\u2013Fenchel transform: convergence of sequences of augmented Lagrangian functions, Moreau\u2013Yosida approximates and subdifferential operators. In: Fermat Days 85: Mathematics for Optimization, North-Holland Mathematics Studies, vol. 129, pp. 1\u201342 (1986)","DOI":"10.1016\/S0304-0208(08)72392-2"},{"key":"1910_CR2","doi-asserted-by":"crossref","unstructured":"Attouch, H., Wets, R.J.B.: A convergence for bivariate functions aimed at the convergence of saddle values (1983)","DOI":"10.1007\/BFb0066247"},{"issue":"1","key":"1910_CR3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1090\/S0002-9947-1983-0712247-X","volume":"280","author":"H Attouch","year":"1983","unstructured":"Attouch, H., Wets, R.J.B.: A convergence theory for saddle functions. Trans. Am. Math. Soc. 280(1), 1\u201341 (1983)","journal-title":"Trans. Am. Math. Soc."},{"key":"1910_CR4","first-page":"1","volume":"84","author":"D Aze","year":"1988","unstructured":"Aze, D.: Rate of convergence for the saddle points of convex-concave functions. Int. Ser. Numer. Math. 84, 1\u201323 (1988)","journal-title":"Int. Ser. Numer. Math."},{"issue":"1","key":"1910_CR5","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1007\/s10851-010-0251-1","volume":"40","author":"A Chambolle","year":"2011","unstructured":"Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120\u2013145 (2011)","journal-title":"J. Math. Imaging Vis."},{"key":"1910_CR6","unstructured":"Dai, B., Shaw, A., He, N., Li, L., Song, L.: Boosting the actor with dual critic. In: ICLR 2018"},{"key":"1910_CR7","unstructured":"Daskalakis, C., Panageas, I.: The limit points of (optimistic) gradient descent in min-max optimization. In: Advances in Neural Information Processing Systems 31, pp. 9236\u20139246. Curran Associates, Inc. (2018)"},{"issue":"1","key":"1910_CR8","doi-asserted-by":"publisher","first-page":"207","DOI":"10.1137\/18M1178244","volume":"29","author":"D Davis","year":"2019","unstructured":"Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM J. Optim. 29(1), 207\u2013239 (2019). https:\/\/doi.org\/10.1137\/18M1178244","journal-title":"SIAM J. Optim."},{"issue":"3","key":"1910_CR9","doi-asserted-by":"publisher","first-page":"1908","DOI":"10.1137\/17M1151031","volume":"29","author":"D Davis","year":"2019","unstructured":"Davis, D., Grimmer, B.: Proximally guided stochastic subgradient method for nonsmooth, nonconvex problems. SIAM J. Optim. 29(3), 1908\u20131930 (2019). https:\/\/doi.org\/10.1137\/17M1151031","journal-title":"SIAM J. Optim."},{"key":"1910_CR10","unstructured":"Diakonikolas, J., Daskalakis, C., Jordan, M.: Efficient methods for structured nonconvex-nonconcave min\u2013max optimization. In: Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 130, pp. 2746\u20132754. PMLR (2021)"},{"issue":"2","key":"1910_CR11","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1090\/S0002-9947-1956-0084194-4","volume":"82","author":"J Douglas","year":"1956","unstructured":"Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421\u2013439 (1956)","journal-title":"Trans. Am. Math. Soc."},{"issue":"1\u20133","key":"1910_CR12","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1007\/BF01581204","volume":"55","author":"J Eckstein","year":"1992","unstructured":"Eckstein, J., Bertsekas, D.P.: On the Douglas\u2013Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1\u20133), 293\u2013318 (1992)","journal-title":"Math. Program."},{"key":"1910_CR13","unstructured":"Farnia, F., Ozdaglar, A.: Do gans always have nash equilibria? In: International Conference on Machine Learning, pp. 3029\u20133039. PMLR (2020)"},{"key":"1910_CR14","first-page":"A209","volume":"30","author":"SD Flam","year":"1986","unstructured":"Flam, S.D.: On penalty methods for minimax problems. Z. Oper. Res. 30, A209\u2013A222 (1986)","journal-title":"Z. Oper. Res."},{"key":"1910_CR15","unstructured":"Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems-Vol. 2, NIPS\u201914, pp. 2672\u20132680. MIT Press, Cambridge (2014)"},{"key":"1910_CR16","unstructured":"Grimmer, B., Lu, H., Worah, P., Mirrokni, V.: The landscape of nonconvex-nonconcave minimax optimization (2020). arXiv:2006.08667"},{"key":"1910_CR17","unstructured":"Grimmer, B., Lu, H., Worah, P., Mirrokni, V.: Limiting behaviors of nonconvex-nonconcave minimax optimization via continuous-time systems (2020). arXiv:2010.10628"},{"issue":"2","key":"1910_CR18","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1016\/0022-247X(89)90247-3","volume":"137","author":"J Guillerme","year":"1989","unstructured":"Guillerme, J.: Convergence of approximate saddle points. J. Math. Anal. Appl. 137(2), 297\u2013311 (1989)","journal-title":"J. Math. Anal. Appl."},{"key":"1910_CR19","unstructured":"Hsieh, Y.P., Mertikopoulos, P., Cevher, V.: The limits of min-max optimization algorithms: convergence to spurious non-critical sets (2020). arXiv:2006.09065"},{"key":"1910_CR20","unstructured":"Jin, C., Netrapalli, P., Jordan, M.I.: Minmax optimization: Stable limit points of gradient descent ascent are locally optimal (2019). arXiv:1902.00618"},{"key":"1910_CR21","unstructured":"Lee, J.D., Simchowitz, M., Jordan, M.I., Recht, B.: Gradient descent only converges to minimizers. In: Conference on Learning Theory, pp. 1246\u20131257 (2016)"},{"key":"1910_CR22","unstructured":"Letcher, A.: On the impossibility of global convergence in multi-loss optimization (2020). arXiv:2005.12649"},{"key":"1910_CR23","unstructured":"Lin, Q., Liu, M., Rafique, H., Yang, T.: Solving weakly-convex-weakly-concave saddle-point problems as successive strongly monotone variational inequalities (2018). arXiv:1810.10207"},{"key":"1910_CR24","unstructured":"Lin, T., Jin, C., Jordan, M.I.: On gradient descent ascent for nonconvex-concave minimax problems (2019). arXiv:1906.00331"},{"key":"1910_CR25","unstructured":"Lin, T., Jin, C., Jordan, M.I.: Near-optimal algorithms for minimax optimization (2020). arXiv:2002.02417"},{"key":"1910_CR26","unstructured":"Lu, H.: An $$ o (s^r) $$-resolution ode framework for discrete-time optimization algorithms and applications to convex-concave saddle-point problems (2020). arXiv:2001.08826"},{"key":"1910_CR27","unstructured":"Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks (2017). arXiv:1706.06083"},{"key":"1910_CR28","unstructured":"Mokhtari, A., Ozdaglar, A., Pattathil, S.: A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach (2019). arXiv:1901.08511"},{"key":"1910_CR29","doi-asserted-by":"crossref","unstructured":"Mouallif, K.: Variational convergence and perturbed proximal method for saddle point problems. In: Optimization, pp. 115\u2013140. Springer, Berlin, Heidelberg (1989)","DOI":"10.1007\/BFb0083590"},{"issue":"1","key":"1910_CR30","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1137\/S1052623403425629","volume":"15","author":"A Nemirovski","year":"2004","unstructured":"Nemirovski, A.: Prox-method with rate of convergence o (1\/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15(1), 229\u2013251 (2004)","journal-title":"SIAM J. Optim."},{"issue":"1","key":"1910_CR31","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1007\/s10107-004-0552-5","volume":"103","author":"Y Nesterov","year":"2005","unstructured":"Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127\u2013152 (2005)","journal-title":"Math. Program."},{"key":"1910_CR32","unstructured":"Nouiehed, M., Sanjabi, M., Huang, T., Lee, J.D., Razaviyayn, M.: Solving a class of non-convex min-max games using iterative first order methods. In: Advances in Neural Information Processing Systems 32, pp. 14934\u201314942. Curran Associates, Inc. (2019)"},{"key":"1910_CR33","unstructured":"Rafique, H., Liu, M., Lin, Q., Yang, T.: Non-convex min-max optimization: provable algorithms and applications in machine learning (2018). arXiv:1810.02060"},{"issue":"5","key":"1910_CR34","doi-asserted-by":"crossref","first-page":"877","DOI":"10.1137\/0314056","volume":"14","author":"RT Rockafellar","year":"1976","unstructured":"Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14(5), 877\u2013898 (1976)","journal-title":"SIAM J. Control. Optim."},{"issue":"3","key":"1910_CR35","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/s0294-1449(16)30401-2","volume":"2","author":"RT Rockafellar","year":"1985","unstructured":"Rockafellar, R.T.: Maximal monotone relations and the second derivatives of nonsmooth functions. Annales de l\u2019I.H.P. Analyse non lin\u00e9aire 2(3), 167\u2013184 (1985)","journal-title":"Annales de l\u2019I.H.P. Analyse non lin\u00e9aire"},{"issue":"1","key":"1910_CR36","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1090\/S0002-9947-1990-1031242-0","volume":"322","author":"RT Rockafellar","year":"1990","unstructured":"Rockafellar, R.T.: Generalized second derivatives of convex functions and saddle functions. Trans. Am. Math. Soc. 322(1), 51\u201377 (1990)","journal-title":"Trans. Am. Math. Soc."},{"key":"1910_CR37","volume-title":"Reinforcement Learning: An Introduction","author":"RS Sutton","year":"2018","unstructured":"Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press (2018)"},{"key":"1910_CR38","unstructured":"Thekumparampil, K.K., Jain, P., Netrapalli, P., Oh, S.: Efficient algorithms for smooth minimax optimization. In: Advances in Neural Information Processing Systems 32, pp. 12680\u201312691. Curran Associates, Inc. (2019)"},{"issue":"1\u20132","key":"1910_CR39","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/0377-0427(94)00094-H","volume":"60","author":"P Tseng","year":"1995","unstructured":"Tseng, P.: On linear convergence of iterative methods for the variational inequality problem. J. Comput. Appl. Math. 60(1\u20132), 237\u2013252 (1995)","journal-title":"J. Comput. Appl. Math."},{"key":"1910_CR40","unstructured":"Yang, J., Kiyavash, N., He, N.: Global convergence and variance-reduced optimization for a class of nonconvex-nonconcave minimax problems (2020). arXiv:2002.09621"},{"key":"1910_CR41","unstructured":"Zhang, G., Poupart, P., Yu, Y.: Optimality and stability in non-convex-non-concave min-max optimization (2020). arXiv:2002.11875"},{"key":"1910_CR42","unstructured":"Zhang, S., He, N.: On the convergence rate of stochastic mirror descent for nonsmooth nonconvex optimization (2018). arXiv:1806.04781"},{"key":"1910_CR43","unstructured":"Zhou, Z., Mertikopoulos, P., Bambos, N., Boyd, S., Glynn, P.W.: Stochastic mirror descent in variationally coherent optimization problems. In: Advances in Neural Information Processing Systems, vol.\u00a030. Curran Associates, Inc. (2017)"}],"container-title":["Mathematical Programming"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10107-022-01910-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10107-022-01910-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10107-022-01910-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,25]],"date-time":"2023-07-25T19:08:28Z","timestamp":1690312108000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10107-022-01910-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12,1]]},"references-count":43,"journal-issue":{"issue":"1-2","published-print":{"date-parts":[[2023,9]]}},"alternative-id":["1910"],"URL":"https:\/\/doi.org\/10.1007\/s10107-022-01910-8","relation":{},"ISSN":["0025-5610","1436-4646"],"issn-type":[{"value":"0025-5610","type":"print"},{"value":"1436-4646","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,12,1]]},"assertion":[{"value":"5 April 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 November 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 December 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}