{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T03:21:06Z","timestamp":1740108066934,"version":"3.37.3"},"reference-count":52,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2023,5,10]],"date-time":"2023-05-10T00:00:00Z","timestamp":1683676800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,5,10]],"date-time":"2023-05-10T00:00:00Z","timestamp":1683676800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61806221"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Pattern Anal Applic"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1007\/s10044-023-01161-z","type":"journal-article","created":{"date-parts":[[2023,5,11]],"date-time":"2023-05-11T08:29:32Z","timestamp":1683793772000},"page":"1349-1362","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["DEC-transformer: deep embedded clustering with transformer on Chinese long text"],"prefix":"10.1007","volume":"26","author":[{"given":"Ao","family":"Zou","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1526-7889","authenticated-orcid":false,"given":"Wenning","family":"Hao","sequence":"additional","affiliation":[]},{"given":"Gang","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Dawei","family":"Jin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,10]]},"reference":[{"key":"1161_CR1","doi-asserted-by":"publisher","first-page":"39501","DOI":"10.1109\/access.2018.2855437","volume":"6","author":"E Min","year":"2018","unstructured":"Min E, Guo X, Liu Q, Zhang G, Cui J, Long J (2018) A survey of clustering with deep learning: From the perspective of network architecture. IEEE Access 6:39501\u201339514. https:\/\/doi.org\/10.1109\/access.2018.2855437","journal-title":"IEEE Access"},{"issue":"3","key":"1161_CR2","doi-asserted-by":"publisher","first-page":"1485","DOI":"10.1007\/s10115-018-1278-7","volume":"61","author":"VHA Soares","year":"2019","unstructured":"Soares VHA, Campello RJGB, Nourashrafeddin S, Milios E, Naldi MC (2019) Combining semantic and term frequency similarities for text clustering. Knowl Inf Syst 61(3):1485\u20131516. https:\/\/doi.org\/10.1007\/s10115-018-1278-7","journal-title":"Knowl Inf Syst"},{"key":"1161_CR3","doi-asserted-by":"publisher","first-page":"57460","DOI":"10.1109\/access.2018.2873327","volume":"6","author":"Y Fan","year":"2018","unstructured":"Fan Y, Gongshen L, Kui M, Zhaoying S (2018) Neural feedback text clustering with BiLSTM-CNN-kmeans. IEEE Access 6:57460\u201357469. https:\/\/doi.org\/10.1109\/access.2018.2873327","journal-title":"IEEE Access"},{"key":"1161_CR4","unstructured":"Seifzadeh S, Farahat AK, Kamel MS, Karray F Short-text clustering using statistical semantics. In: Proceedings of the 24th international conference on World Wide Web, New York"},{"issue":"11\u201312","key":"1161_CR5","doi-asserted-by":"publisher","first-page":"1901","DOI":"10.1016\/j.camwa.2008.10.010","volume":"57","author":"W Song","year":"2009","unstructured":"Song W, Park SC (2009) Genetic algorithm for text clustering based on latent semantic indexing. Comput. Math. Appl. 57(11\u201312):1901\u20131907. https:\/\/doi.org\/10.1016\/j.camwa.2008.10.010","journal-title":"Comput. Math. Appl."},{"key":"1161_CR6","doi-asserted-by":"crossref","unstructured":"Xu, J, Wang P, Tian G, Xu B, Zhao J, Wang F, Hao H (2015) Short text clustering via convolutional neural networks. https:\/\/openreview.net\/forum?id=HJ-GGQWdWB. Accessed 03 Jun 2021","DOI":"10.3115\/v1\/W15-1509"},{"key":"1161_CR7","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1016\/j.neunet.2016.12.008","volume":"88","author":"J Xu","year":"2017","unstructured":"Xu J, Xu B, Wang P, Zheng S, Tian G, Zhao J, Xu B (2017) Self-taught convolutional neural networks for short text clustering. Neural Netw 88:22\u201331. https:\/\/doi.org\/10.1016\/j.neunet.2016.12.008","journal-title":"Neural Netw"},{"key":"1161_CR8","doi-asserted-by":"crossref","unstructured":"Revanasiddappa MB, Harish BS, Kumar SVA (2017) Clustering text documents using kernel possibilistic c-means. In: Proceedings of international conference on cognition and recognition. Springer, Berlin","DOI":"10.1007\/978-981-10-5146-3_13"},{"issue":"12","key":"1161_CR9","doi-asserted-by":"publisher","first-page":"3600","DOI":"10.1016\/j.patcog.2008.05.018","volume":"41","author":"S Xiang","year":"2008","unstructured":"Xiang S, Nie F, Zhang C (2008) Learning a mahalanobis distance metric for data clustering and classification. Pattern Recogn 41(12):3600\u20133612. https:\/\/doi.org\/10.1016\/j.patcog.2008.05.018","journal-title":"Pattern Recogn"},{"key":"1161_CR10","doi-asserted-by":"crossref","unstructured":"Li T, Ma S, Ogihara M (2004) Entropy-based criterion in categorical clustering. In: 21st international conference on machine learning\u2014ICML\u201904, New York","DOI":"10.1145\/1015330.1015404"},{"issue":"2\/3","key":"1161_CR11","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1023\/a:1012801612483","volume":"17","author":"M Halkidi","year":"2001","unstructured":"Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques\u2019. J Intell Inf Syst 17(2\/3):107\u2013145. https:\/\/doi.org\/10.1023\/a:1012801612483","journal-title":"J Intell Inf Syst"},{"key":"1161_CR12","doi-asserted-by":"crossref","unstructured":"Aggarwal CC, Zhai CA (2012) Survey of text clustering algorithms. In: Mining text data. Springer, New York","DOI":"10.1007\/978-1-4614-3223-4"},{"issue":"16","key":"1161_CR13","doi-asserted-by":"publisher","first-page":"1407","DOI":"10.1049\/joe.2018.8282","volume":"2018","author":"B Wang","year":"2018","unstructured":"Wang B, Liu W, Lin Z, Hu X, Wei J, Liu C (2018) Text clustering algorithm based on deep representation learning. J Eng 2018(16):1407\u20131414","journal-title":"J Eng"},{"key":"1161_CR14","first-page":"1137","volume":"3","author":"Y Bengio","year":"2003","unstructured":"Bengio Y, Ducharme R, Vincent P, Janvin C (2003) A neural probabilistic language model. J Mach Learn Res 3:1137\u20131155","journal-title":"J Mach Learn Res"},{"key":"1161_CR15","unstructured":"Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. Adv Neural Inf Process Syst 26:3111\u20133119. Accessed 03 Jun 2021"},{"key":"1161_CR16","unstructured":"Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: Xing EP, Jebara T (eds) Proceedings of the 31st international conference on machine learning. Proceedings of machine learning research, vol 32. PMLR, Bejing, pp 1188\u20131196. http:\/\/proceedings.mlr.press\/v32\/le14.html"},{"key":"1161_CR17","unstructured":"Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 [cs]. Accessed 03 Jun 2021"},{"key":"1161_CR18","unstructured":"Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019) RoBERTa: a robustly optimized BERT pretraining approach. arXiv:1907.11692 [cs]. Accessed 03 Jun 2021"},{"issue":"7","key":"1161_CR19","doi-asserted-by":"publisher","first-page":"1802","DOI":"10.1007\/s10489-017-1055-4","volume":"48","author":"J Qiang","year":"2017","unstructured":"Qiang J, Li Y, Yuan Y, Wu X (2017) Short text clustering based on pitman-yor process mixture model. Appl Intell 48(7):1802\u20131812. https:\/\/doi.org\/10.1007\/s10489-017-1055-4","journal-title":"Appl Intell"},{"issue":"8","key":"1161_CR20","doi-asserted-by":"publisher","first-page":"2610","DOI":"10.1007\/s10489-020-01677-5","volume":"50","author":"D-T Dinh","year":"2020","unstructured":"Dinh D-T, Huynh V-N (2020) k-PbC: an improved cluster center initialization for categorical data clustering. Appl Intell 50(8):2610\u20132632. https:\/\/doi.org\/10.1007\/s10489-020-01677-5","journal-title":"Appl Intell"},{"issue":"5","key":"1161_CR21","doi-asserted-by":"publisher","first-page":"1609","DOI":"10.1007\/s10489-019-01606-1","volume":"50","author":"J Chen","year":"2020","unstructured":"Chen J, Gong Z, Liu W (2020) A Dirichlet process Biterm-based mixture model for short text stream clustering. Appl Intell 50(5):1609\u20131619. https:\/\/doi.org\/10.1007\/s10489-019-01606-1","journal-title":"Appl Intell"},{"key":"1161_CR22","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","volume":"61","author":"J Schmidhuber","year":"2015","unstructured":"Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85\u2013117. https:\/\/doi.org\/10.1016\/j.neunet.2014.09.003","journal-title":"Neural Netw"},{"key":"1161_CR23","unstructured":"Yang B, Fu X, Sidiropoulos N, Hong M (2017) Towards k-means-friendly spaces: simultaneous deep learning and clustering, In: Proceedings of machine learning research, PMLR, Sydney, pp 3861\u20133870"},{"key":"1161_CR24","doi-asserted-by":"crossref","unstructured":"Huang P, Huang Y, Wang W, Wang L (2014) Deep embedding network for clustering. In: 2014 22nd international conference on pattern recognition, Stockholm","DOI":"10.1109\/ICPR.2014.272"},{"key":"1161_CR25","unstructured":"Chen D, Lv J, Zhang Y (2017) Unsupervised multi-manifold clustering by learning deep representation. In: AAAI workshops"},{"key":"1161_CR26","doi-asserted-by":"crossref","unstructured":"Dizaji GK, Herandi A, Deng C, Cai W, Huang H (2017) Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: Proceedings of the IEEE international conference on computer vision, pp 5736\u20135745","DOI":"10.1109\/ICCV.2017.612"},{"key":"1161_CR27","unstructured":"Shah AS, Koltun V (2018) Deep continuous clustering. arXiv:1803.01449 [cs]"},{"key":"1161_CR28","unstructured":"Chen G (2015) Deep learning with nonparametric clustering. arXiv:1501.03084 [cs]"},{"key":"1161_CR29","unstructured":"Xie J, Girshick R, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. In: International conference on machine learning, pp 478\u2013487. PMLR"},{"key":"1161_CR30","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1016\/j.patcog.2018.05.019","volume":"83","author":"F Li","year":"2018","unstructured":"Li F, Qiao H, Zhang B, Xi X (2018) Discriminatively boosted image clustering with fully convolutional auto-encoders. Pattern Recogn 83:161\u2013173. https:\/\/doi.org\/10.1016\/j.patcog.2018.05.019","journal-title":"Pattern Recogn"},{"issue":"2","key":"1161_CR31","doi-asserted-by":"publisher","first-page":"421","DOI":"10.1109\/TMM.2017.2745702","volume":"20","author":"C-C Hsu","year":"2018","unstructured":"Hsu C-C, Lin C-W (2018) CNN-based joint clustering and representation learning with feature drift compensation for large-scale image data. IEEE Trans Multimedia 20(2):421\u2013429. https:\/\/doi.org\/10.1109\/TMM.2017.2745702","journal-title":"IEEE Trans Multimedia"},{"key":"1161_CR32","unstructured":"Hu W, Miyato T, Tokui S, Matsumoto E, Sugiyama M (2017) Learning discrete representations via information maximizing self augmented training. In: International conference on machine learning, pp 1558\u20131567. PMLR"},{"key":"1161_CR33","doi-asserted-by":"crossref","unstructured":"Yang J, Parikh D, Batra D (2016) Joint unsupervised learning of deep representations and image clusters. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5147\u20135156","DOI":"10.1109\/CVPR.2016.556"},{"key":"1161_CR34","doi-asserted-by":"crossref","unstructured":"Chang J, Wang L, Meng G, Xiang S, Pan C (2017) Deep adaptive image clustering. In Proceedings of the IEEE international conference on computer vision, pp 5879\u20135887","DOI":"10.1109\/ICCV.2017.626"},{"key":"1161_CR35","doi-asserted-by":"crossref","unstructured":"Jiang Z, Zheng Y, Tan H, Tang B, Zhou H (2017) Variational deep embedding: an unsupervised and generative approach to clustering. In Proceedings of the 26th international joint conference on artificial intelligence, pp 1965\u20131972","DOI":"10.24963\/ijcai.2017\/273"},{"key":"1161_CR36","unstructured":"Dilokthanakul N, Mediano AMP, Garnelo M, Lee CHM, Salimbeni H, Arulkumaran K, Shanahan M (2017) Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv: Learning"},{"key":"1161_CR37","unstructured":"Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016) Infogan: interpretable representation learning by information maximizing generative adversarial nets. Advances in neural information processing systems, pp 2172\u20132180"},{"key":"1161_CR38","first-page":"194","volume":"2019","author":"A Hadifar","year":"2019","unstructured":"Hadifar A, Sterckx L, Demeester T, Develder C (2019) A self-training approach for short text clustering. ACL 2019:194","journal-title":"ACL"},{"key":"1161_CR39","doi-asserted-by":"publisher","unstructured":"Zhang W, Dong C, Yin J, Wang J (2021) Attentive representation learning with adversarial training for short text clustering. IEEE Trans Knowl Data Eng. https:\/\/doi.org\/10.1109\/tkde.2021.3052244","DOI":"10.1109\/tkde.2021.3052244"},{"key":"1161_CR40","unstructured":"Zhou J, Cheng X, Zhang J (2019) An end-to-end neural network framework for text clustering. arXiv:1903.09424 [cs]. arXiv: 1903.09424. Accessed 03 Jun 2021"},{"key":"1161_CR41","unstructured":"Rakib MRH, Zeh N, Jankowska M, Milios E Enhancement of short text clustering by\u00a0iterative classification. In: Natural language processing and information systems. Springer, Berlin"},{"key":"1161_CR42","doi-asserted-by":"crossref","unstructured":"Pugachev L, Burtsev M (2021) Short text clustering with transformers. arXiv:2102.00541 [cs]. Accessed 03 Jun 2021","DOI":"10.28995\/2075-7182-2021-20-571-577"},{"key":"1161_CR43","unstructured":"Aljalbout E, Golkov V, Siddiqui Y, Strobel M, Cremers D (2018) Clustering with deep learning: taxonomy and new methods. arXiv:1801.07648 [cs, stat]. Accessed 03 Jun 2021"},{"issue":"11","key":"1161_CR44","first-page":"2579","volume":"9","author":"L Van der Maaten","year":"2008","unstructured":"Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(11): 2579\u20132605","journal-title":"J Mach Learn Res"},{"issue":"1\u20132","key":"1161_CR45","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1002\/nav.3800020109","volume":"2","author":"HW Kuhn","year":"1955","unstructured":"Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Log Q 2(1\u20132):83\u201397","journal-title":"Naval Res Log Q"},{"key":"1161_CR46","unstructured":"Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: an Imperative style, high-performance deep learning library. arXiv:1912.01703 [cs, stat]. Accessed 03 Jun 2021"},{"key":"1161_CR47","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825\u20132830","journal-title":"J Mach Learn Res"},{"key":"1161_CR48","doi-asserted-by":"crossref","unstructured":"Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R, Funtowicz M, Davison J, Shleifer S, von Platen P, Ma C, Jernite Y, Plu J, Xu C, Scao TL, Gugger S, Drame M, Lhoest Q, Rush A (2020) Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations, Stroudsburg","DOI":"10.18653\/v1\/2020.emnlp-demos.6"},{"key":"1161_CR49","unstructured":"Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, Le QV (2020) XLNet: generalized autoregressive pretraining for language understanding. arXiv:1906.08237 [cs]. Accessed 03 Jun 2021"},{"key":"1161_CR50","doi-asserted-by":"publisher","unstructured":"Cui Y, Che W, Liu T, Qin B, Wang S, Hu G (2020) Revisiting pre-trained models for Chinese natural language processing. Find Assoc Comput Linguist: EMNLP 2020:657\u2013668. https:\/\/doi.org\/10.18653\/v1\/2020.findings-emnlp.58. arXiv: 2004.13922. Accessed 03 Jun 2021","DOI":"10.18653\/v1\/2020.findings-emnlp.58"},{"key":"1161_CR51","doi-asserted-by":"crossref","unstructured":"Pugachev L, Burtsev M (2021) Short text clustering with transformers. arXiv preprint arXiv:2102.00541","DOI":"10.28995\/2075-7182-2021-20-571-577"},{"key":"1161_CR52","doi-asserted-by":"crossref","unstructured":"Hu X, Sun N, Zhang C, Chua T-S (2009) Exploiting internal and external semantics for the clustering of short texts using world knowledge. In: Proceeding of the 18th ACM conference on information and knowledge management\u2014CIKM\u201909, New York","DOI":"10.1145\/1645953.1646071"}],"container-title":["Pattern Analysis and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10044-023-01161-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10044-023-01161-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10044-023-01161-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,22]],"date-time":"2023-07-22T14:06:25Z","timestamp":1690034785000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10044-023-01161-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,10]]},"references-count":52,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2023,8]]}},"alternative-id":["1161"],"URL":"https:\/\/doi.org\/10.1007\/s10044-023-01161-z","relation":{},"ISSN":["1433-7541","1433-755X"],"issn-type":[{"type":"print","value":"1433-7541"},{"type":"electronic","value":"1433-755X"}],"subject":[],"published":{"date-parts":[[2023,5,10]]},"assertion":[{"value":"4 June 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 March 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"10 May 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no relevant financial or non-financial interests to disclose.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}