{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T03:58:55Z","timestamp":1727063935735},"reference-count":35,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2017,2,15]],"date-time":"2017-02-15T00:00:00Z","timestamp":1487116800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Pattern Anal Applic"],"published-print":{"date-parts":[[2017,8]]},"DOI":"10.1007\/s10044-017-0597-8","type":"journal-article","created":{"date-parts":[[2017,2,15]],"date-time":"2017-02-15T07:56:47Z","timestamp":1487145407000},"page":"871-881","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":166,"title":["Brain tumor classification from multi-modality MRI using wavelets and machine learning"],"prefix":"10.1007","volume":"20","author":[{"given":"Khalid","family":"Usman","sequence":"first","affiliation":[]},{"given":"Kashif","family":"Rajpoot","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,2,15]]},"reference":[{"key":"597_CR1","doi-asserted-by":"crossref","first-page":"R97","DOI":"10.1088\/0031-9155\/58\/13\/R97","volume":"58","author":"S Bauer","year":"2013","unstructured":"Bauer S, Wiest R, Nolte L-P, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58:R97","journal-title":"Phys Med Biol"},{"key":"597_CR2","doi-asserted-by":"crossref","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","volume":"34","author":"BH Menze","year":"2015","unstructured":"Menze BH, Jakab A, Bauer S et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993\u20132024","journal-title":"IEEE Trans Med Imaging"},{"key":"597_CR3","unstructured":"Festa J, Pereira S, Mariz JA, Sousa N, Silva CA (2013) Automatic brain tumor segmentation of multi-sequence mr images using random decision forests. In Proceedings MICCAI BRATS, 2013"},{"key":"597_CR4","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1109\/TBME.2009.2012423","volume":"56","author":"T Wang","year":"2009","unstructured":"Wang T, Cheng I, Basu A (2009) Fluid vector flow and applications in brain tumor segmentation. IEEE Trans Biomed Eng 56:781\u2013789","journal-title":"IEEE Trans Biomed Eng"},{"key":"597_CR5","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1016\/j.compbiomed.2011.04.010","volume":"41","author":"V Harati","year":"2011","unstructured":"Harati V, Khayati R, Farzan A (2011) Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images. Comput Biol Med 41:483\u2013492","journal-title":"Comput Biol Med"},{"key":"597_CR6","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.compmedimag.2011.06.001","volume":"36","author":"BN Saha","year":"2012","unstructured":"Saha BN, Ray N, Greiner R, Murtha A, Zhang H (2012) Quick detection of brain tumors and edemas: a bounding box method using symmetry. Comput Med Imaging Graph\u00a036:95\u2013107","journal-title":"Comput Med Imaging Graph"},{"key":"597_CR7","doi-asserted-by":"crossref","first-page":"56","DOI":"10.4304\/jmm.1.1.56-61","volume":"1","author":"MS Khalid","year":"2006","unstructured":"Khalid MS, Ilyas MU, Sarfaraz MS, Ajaz MA (2006) Bhattacharyya coefficient in correlation of gray-scale objects. J Multimed 1:56\u201361","journal-title":"J Multimed"},{"key":"597_CR8","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1016\/j.acra.2012.03.026","volume":"19","author":"Y Zhu","year":"2012","unstructured":"Zhu Y, Young GS, Xue Z, Huang RY, You H, Setayesh K, Hatabu H, Cao F, Wong ST (2012) Semi-automatic segmentation software for quantitative clinical brain glioblastoma evaluation. Acad Radiol 19:977\u2013985","journal-title":"Acad Radiol"},{"key":"597_CR9","doi-asserted-by":"crossref","first-page":"694","DOI":"10.1016\/j.mri.2012.01.006","volume":"30","author":"J Sachdeva","year":"2012","unstructured":"Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK (2012) A novel content-based active contour model for brain tumor segmentation. Magn Reson Imaging 30:694\u2013715","journal-title":"Magn Reson Imaging"},{"key":"597_CR10","doi-asserted-by":"crossref","unstructured":"Rexilius J, Hahn HK, Klein J, Lentschig MG, Peitgen H-O (2007) Multispectral brain tumor segmentation based on histogram model adaptation. In: Medical imaging\u2014SPIE, 2007, pp 65140V\u201365140V-10","DOI":"10.1117\/12.709410"},{"key":"597_CR11","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1109\/TMI.2007.912817","volume":"27","author":"JJ Corso","year":"2008","unstructured":"Corso JJ, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A (2008) Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans Med Imaging 27:629\u2013640","journal-title":"IEEE Trans Med Imaging"},{"key":"597_CR12","doi-asserted-by":"crossref","unstructured":"Ruan S, Lebonvallet S, Merabet A, Constans J (2007) Tumor segmentation from a multispectral MRI images by using support vector machine classification. In: 4th IEEE international symposium on Biomedical imaging: from nano to macro, 2007. ISBI 2007, pp 1236\u20131239","DOI":"10.1109\/ISBI.2007.357082"},{"key":"597_CR13","doi-asserted-by":"crossref","first-page":"1471","DOI":"10.1016\/j.compbiomed.2013.07.001","volume":"43","author":"I Mehmood","year":"2013","unstructured":"Mehmood I, Ejaz N, Sajjad M, Baik SW (2013) Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation. Comput Biol Med 43:1471\u20131483","journal-title":"Comput Biol Med"},{"key":"597_CR14","doi-asserted-by":"crossref","first-page":"888","DOI":"10.1109\/34.868688","volume":"22","author":"J Shi","year":"2000","unstructured":"Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888\u2013905","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"597_CR15","unstructured":"Zhao L, Sarikaya D, Corso JJ (2013) Automatic brain tumor segmentation with MRF on supervoxels. In: Proceedings of NCI-MICCAI BRATS, vol 1, p 51"},{"key":"597_CR16","unstructured":"Guo X, Schwartz L, Zhao B (2013) Semi-automatic segmentation of multimodal brain tumor using active contours. In: Proceedings MICCAI BRATS, 2013"},{"key":"597_CR17","doi-asserted-by":"crossref","first-page":"1116","DOI":"10.1016\/j.neuroimage.2006.01.015","volume":"31","author":"PA Yushkevich","year":"2006","unstructured":"Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116\u20131128","journal-title":"Neuroimage"},{"key":"597_CR18","doi-asserted-by":"crossref","unstructured":"Kikinis R, Pieper S (2011) 3D Slicer as a tool for interactive brain tumor segmentation. In: Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE, 2011, pp 6982\u20136984","DOI":"10.1109\/IEMBS.2011.6091765"},{"key":"597_CR19","unstructured":"Reza S, Iftekharuddin K (2013) Multi-class abnormal brain tissue segmentation using texture features. In: Proceedings of NCI-MICCAI BRATS, vol 1, pp 38\u201342"},{"key":"597_CR20","first-page":"121","volume":"13","author":"M Sifuzzaman","year":"2009","unstructured":"Sifuzzaman M, Islam M, Ali M (2009) Application of wavelet transform and its advantages compared to Fourier transform. J Phys Sci 13:121\u2013134","journal-title":"J Phys Sci"},{"key":"597_CR21","doi-asserted-by":"crossref","unstructured":"Proch\u00e1zka A, Gr\u00e1fov\u00e1 L, Vy\u0161ata O, Caregroup N (2011) Three-dimensional wavelet transform in multi-dimensional biomedical volume processing. In: Proceedings of the IASTED international conference graphics and virtual reality, Cambridge, UK, 2011","DOI":"10.2316\/P.2011.741-010"},{"key":"597_CR22","doi-asserted-by":"crossref","first-page":"3197","DOI":"10.1016\/j.patrec.2003.08.005","volume":"24","author":"S Arivazhagan","year":"2003","unstructured":"Arivazhagan S, Ganesan L (2003) Texture segmentation using wavelet transform. Pattern Recogn Lett 24:3197\u20133203","journal-title":"Pattern Recogn Lett"},{"key":"597_CR23","doi-asserted-by":"crossref","first-page":"427","DOI":"10.4304\/jmm.4.6.427-434","volume":"4","author":"J Cheng","year":"2009","unstructured":"Cheng J, Liu Y (2009) 3-D reconstruction of medical image using wavelet transform and snake model. J Multimed 4:427\u2013434","journal-title":"J Multimed"},{"key":"597_CR24","unstructured":"Rajpoot KM, Rajpoot NM (2004) Wavelets and support vector machines for texture classification. In Multitopic conference, 2004. Proceedings of INMIC 2004. 8th international, 2004, pp 328\u2013333"},{"key":"597_CR25","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman L (2001) Random forests. Mach Learn 45:5\u201332","journal-title":"Mach Learn"},{"key":"597_CR26","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1186\/1471-2105-8-25","volume":"8","author":"C Strobl","year":"2007","unstructured":"Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform 8:25","journal-title":"BMC Bioinform"},{"key":"597_CR27","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/jcss.1997.1504","volume":"55","author":"Y Freund","year":"1997","unstructured":"Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119\u2013139","journal-title":"J Comput Syst Sci"},{"key":"597_CR28","doi-asserted-by":"crossref","first-page":"297","DOI":"10.2307\/1932409","volume":"26","author":"LR Dice","year":"1945","unstructured":"Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297\u2013302","journal-title":"Ecology"},{"key":"597_CR29","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1111\/j.1469-8137.1912.tb05611.x","volume":"11","author":"P Jaccard","year":"1912","unstructured":"Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11:37\u201350","journal-title":"New Phytol"},{"key":"597_CR30","doi-asserted-by":"crossref","unstructured":"Bauer S, Nolte L-P, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Medical image computing and computer-assisted intervention\u2013MICCAI 2011. Springer, Lecture Notes in Computer Science, vol 6893, pp 354\u2013361","DOI":"10.1007\/978-3-642-23626-6_44"},{"key":"597_CR31","unstructured":"Doyle S, Vasseur F, Dojat M, Forbes F (2013) Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM. In: Proceedings of the NCI-MICCAI BraTS, pp 18\u201322"},{"key":"597_CR32","unstructured":"Cordier N, Menze B, Delingette H, Ayache N (2013) Patch-based segmentation of brain tissues. In MICCAI challenge on multimodal brain tumor segmentation, 2013, pp 6\u201317"},{"key":"597_CR33","doi-asserted-by":"crossref","unstructured":"Subbanna NK, Precup D, Collins DL, Arbel T (2013) Hierarchical probabilistic gabor and MRF segmentation of brain tumours in MRI volumes. In: Medical image computing and computer-assisted intervention\u2013MICCAI 2013. Springer, \u00a0Lecture Notes in Computer Science, vol 8149, pp 751\u2013758","DOI":"10.1007\/978-3-642-40811-3_94"},{"key":"597_CR34","unstructured":"Tustison N, Wintermark M, Durst C, Avants B (2013) ANTs and arboles. In: Proceedings of NCI-MICCAI BRATS, vol 1, p 47"},{"key":"597_CR35","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s11548-013-0922-7","volume":"9","author":"W Wu","year":"2014","unstructured":"Wu W, Chen AY, Zhao L, Corso JJ (2014) Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int J Comput Assist Radiol Surg 9:241\u2013253","journal-title":"Int J Comput Assist Radiol Surg"}],"container-title":["Pattern Analysis and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10044-017-0597-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10044-017-0597-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10044-017-0597-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,18]],"date-time":"2019-09-18T18:02:13Z","timestamp":1568829733000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10044-017-0597-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,2,15]]},"references-count":35,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2017,8]]}},"alternative-id":["597"],"URL":"https:\/\/doi.org\/10.1007\/s10044-017-0597-8","relation":{},"ISSN":["1433-7541","1433-755X"],"issn-type":[{"value":"1433-7541","type":"print"},{"value":"1433-755X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,2,15]]}}}