{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,11]],"date-time":"2024-06-11T00:17:43Z","timestamp":1718065063156},"reference-count":30,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2015,7,16]],"date-time":"2015-07-16T00:00:00Z","timestamp":1437004800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Pattern Anal Applic"],"published-print":{"date-parts":[[2017,5]]},"DOI":"10.1007\/s10044-015-0497-8","type":"journal-article","created":{"date-parts":[[2015,7,15]],"date-time":"2015-07-15T05:34:33Z","timestamp":1436938473000},"page":"383-400","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":18,"title":["Extreme entropy machines: robust information theoretic classification"],"prefix":"10.1007","volume":"20","author":[{"given":"Wojciech Marian","family":"Czarnecki","sequence":"first","affiliation":[]},{"given":"Jacek","family":"Tabor","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2015,7,16]]},"reference":[{"key":"497_CR1","unstructured":"Anthony M (2003) Learning multivalued multithreshold functions. CDMA Research Report No. LSE-CDMA-2003-03, London School of Economics"},{"key":"497_CR2","unstructured":"Bache K, Lichman M (2013) UCI machine learning repository. http:\/\/archive.ics.uci.edu\/ml . Accessed 30 June 2015"},{"issue":"3","key":"497_CR3","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1145\/1961189.1961199","volume":"2","author":"CC Chang","year":"2011","unstructured":"Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27","journal-title":"ACM Trans Intell Syst Technol"},{"issue":"3","key":"497_CR4","first-page":"273","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273\u2013297","journal-title":"Mach Learn"},{"key":"497_CR5","volume-title":"Elements of information theory","author":"TM Cover","year":"2012","unstructured":"Cover TM, Thomas JA (2012) Elements of information theory. Wiley, New York"},{"key":"497_CR6","unstructured":"Czarnecki WM, Tabor J (2014) Cluster based RBF kernel for support vector machines. ArXiv e-prints. http:\/\/arxiv.org\/abs\/1408.2869 . Accessed 30 June 2015"},{"issue":"13","key":"497_CR7","doi-asserted-by":"crossref","first-page":"5591","DOI":"10.1016\/j.eswa.2015.03.007","volume":"42","author":"WM Czarnecki","year":"2014","unstructured":"Czarnecki WM, Tabor J (2014) Multithreshold Entropy Linear Classifier: Theory and applications. Expert Syst Appl 42(13):5591\u20135606","journal-title":"Expert Syst Appl"},{"key":"497_CR8","doi-asserted-by":"crossref","unstructured":"Dempster AP, Laird NM, Rubin DB Maximum likelihood from incomplete data via the em algorithm. In: Journal of the Royal Statistical Society. Series B (Methodological), JSTOR, pp 1\u201338 (1977)","DOI":"10.1111\/j.2517-6161.1977.tb01600.x"},{"key":"497_CR9","first-page":"2153","volume":"6","author":"P Drineas","year":"2005","unstructured":"Drineas P, Mahoney MW (2005) On the Nystr\u00f6m method for approximating a Gram matrix for improved kernel-based learning. J Mach Learn Res 6:2153\u20132175","journal-title":"J Mach Learn Res"},{"key":"497_CR10","unstructured":"Durrant RJ, Kaban A (2013) Sharp generalization error bounds for randomly-projected classifiers. Proceedings of International Conference on Machine Learning (ICML), pp 693\u2013701"},{"key":"497_CR11","unstructured":"Huang GB, Zhu QY, Siew CK: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of the 2004 IEEE international joint conference on neural networks, 2004, vol 2. IEEE, pp 985\u2013990 (2004)"},{"issue":"1","key":"497_CR12","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","volume":"70","author":"GB Huang","year":"2006","unstructured":"Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489\u2013501","journal-title":"Neurocomputing"},{"issue":"6","key":"497_CR13","doi-asserted-by":"crossref","first-page":"614","DOI":"10.1016\/j.jfranklin.2006.03.018","volume":"343","author":"R Jenssen","year":"2006","unstructured":"Jenssen R, Principe JC, Erdogmus D, Eltoft T (2006) The Cauchy\u2013Schwarz divergence and parzen windowing: connections to graph theory and mercer kernels. J Frankl Inst 343(6):614\u2013629","journal-title":"J Frankl Inst"},{"key":"497_CR14","unstructured":"Jones E, Oliphant T, Peterson P (2001) Scipy: open source scientific tools for python. http:\/\/www.scipy.org\/ . Accessed 30 June 2015"},{"issue":"6","key":"497_CR15","doi-asserted-by":"crossref","first-page":"2178","DOI":"10.1109\/18.720536","volume":"44","author":"SR Kulkarni","year":"1998","unstructured":"Kulkarni SR, Lugosi G, Venkatesh SS (1998) Learning pattern classification-a survey. IEEE Trans Inf Theory 44(6):2178\u20132206","journal-title":"IEEE Trans Inf Theory"},{"issue":"2","key":"497_CR16","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1016\/S0047-259X(03)00096-4","volume":"88","author":"O Ledoit","year":"2004","unstructured":"Ledoit O, Wolf M (2004) A well-conditioned estimator for large-dimensional covariance matrices. J Multivar Anal 88(2):365\u2013411","journal-title":"J Multivar Anal"},{"key":"497_CR17","first-page":"49","volume":"2","author":"PC Mahalanobis","year":"1936","unstructured":"Mahalanobis PC (1936) On the generalized distance in statistics. Proc Natl Inst Sci (Calcutta) 2:49\u201355","journal-title":"Proc Natl Inst Sci (Calcutta)"},{"key":"497_CR18","doi-asserted-by":"crossref","first-page":"1065","DOI":"10.1214\/aoms\/1177704472","volume":"33","author":"E Parzen","year":"1962","unstructured":"Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065\u20131076","journal-title":"Ann Math Stat"},{"key":"497_CR19","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825\u20132830","journal-title":"J Mach Learn Res"},{"key":"497_CR20","doi-asserted-by":"crossref","unstructured":"Poggio T, Girosi F (1989) A theory of networks for approximation and learning. In: Tech. rep, DTIC document","DOI":"10.21236\/ADA224517"},{"key":"497_CR21","volume-title":"Information theoretic learning","author":"JC Principe","year":"2000","unstructured":"Principe JC (2000) Information theoretic learning. Springer, Berlin"},{"key":"497_CR22","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4899-3324-9","volume-title":"Density estimation for statistics and data analysis","author":"BW Silverman","year":"1986","unstructured":"Silverman BW (1986) Density estimation for statistics and data analysis, vol 26. CRC Press, Boca Raton"},{"issue":"3","key":"497_CR23","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1023\/A:1018628609742","volume":"9","author":"JA Suykens","year":"1999","unstructured":"Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293\u2013300","journal-title":"Neural Process Lett"},{"issue":"1","key":"497_CR24","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/S0925-2312(01)00644-0","volume":"48","author":"JA Suykens","year":"2002","unstructured":"Suykens JA, De Brabanter J, Lukas L, Vandewalle J (2002) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1):85\u2013105","journal-title":"Neurocomputing"},{"issue":"9","key":"497_CR25","doi-asserted-by":"crossref","first-page":"3046","DOI":"10.1016\/j.patcog.2014.03.006","volume":"47","author":"J Tabor","year":"2014","unstructured":"Tabor J, Spurek P (2014) Cross-entropy clustering. Pattern Recogn 47(9):3046\u20133059","journal-title":"Pattern Recogn"},{"key":"497_CR26","volume-title":"Statistical analysis of finite mixture distributions","author":"DM Titterington","year":"1985","unstructured":"Titterington DM, Smith AF, Makov UE et al (1985) Statistical analysis of finite mixture distributions, vol 7. Wiley, New York"},{"issue":"2","key":"497_CR27","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1109\/MCSE.2011.37","volume":"13","author":"S Walt Van Der","year":"2011","unstructured":"Van Der Walt S, Colbert SC, Varoquaux G (2011) The numpy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22\u201330","journal-title":"Comput Sci Eng"},{"issue":"1","key":"497_CR28","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/B:MACH.0000008082.80494.e0","volume":"54","author":"T Gestel Van","year":"2004","unstructured":"Van Gestel T, Suykens JA, Baesens B, Viaene S, Vanthienen J, Dedene G, De Moor B, Vandewalle J (2004) Benchmarking least squares support vector machine classifiers. Mach Learn 54(1):5\u201332","journal-title":"Mach Learn"},{"key":"497_CR29","doi-asserted-by":"crossref","unstructured":"Zhang, T., Zhou, Z.H.: Large margin distribution machine. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 313\u2013322 (2014)","DOI":"10.1145\/2623330.2623710"},{"key":"497_CR30","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.neucom.2012.08.010","volume":"101","author":"W Zong","year":"2013","unstructured":"Zong W, Huang GB, Chen Y (2013) Weighted extreme learning machine for imbalance learning. Neurocomputing 101:229\u2013242","journal-title":"Neurocomputing"}],"container-title":["Pattern Analysis and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10044-015-0497-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10044-015-0497-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10044-015-0497-8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10044-015-0497-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,28]],"date-time":"2019-08-28T07:22:05Z","timestamp":1566976925000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10044-015-0497-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,7,16]]},"references-count":30,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2017,5]]}},"alternative-id":["497"],"URL":"https:\/\/doi.org\/10.1007\/s10044-015-0497-8","relation":{},"ISSN":["1433-7541","1433-755X"],"issn-type":[{"value":"1433-7541","type":"print"},{"value":"1433-755X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,7,16]]}}}