{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,4]],"date-time":"2024-10-04T04:26:05Z","timestamp":1728015965947},"reference-count":59,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2022,9,12]],"date-time":"2022-09-12T00:00:00Z","timestamp":1662940800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,9,12]],"date-time":"2022-09-12T00:00:00Z","timestamp":1662940800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61922054","61872235"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61832017","61729202"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61832013"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"National Key Research and Development Program of China","award":["2020YFB1710200"]},{"DOI":"10.13039\/501100003399","name":"Science and Technology Commission of Shanghai Municipality","doi-asserted-by":"crossref","award":["19511120300"],"id":[{"id":"10.13039\/501100003399","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Hangzhou Qianjiang Distinguished Expert Program"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["The VLDB Journal"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1007\/s00778-022-00762-0","type":"journal-article","created":{"date-parts":[[2022,9,12]],"date-time":"2022-09-12T16:07:39Z","timestamp":1662998859000},"page":"623-645","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Learning-based query optimization for multi-probe approximate nearest neighbor search"],"prefix":"10.1007","volume":"32","author":[{"given":"Pengcheng","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Bin","family":"Yao","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Bin","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Xiao","family":"He","sequence":"additional","affiliation":[]},{"given":"Feifei","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yuanfei","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Chaoqun","family":"Zhan","sequence":"additional","affiliation":[]},{"given":"Feilong","family":"Tang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,12]]},"reference":[{"key":"762_CR1","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1016\/j.aci.2014.10.001","volume":"12","author":"DA Adeniyi","year":"2016","unstructured":"Adeniyi, D.A., Wei, Z., Yongquan, Y.: Automated web usage data mining and recommendation system using $$k$$-nearest neighbor ($$k$$NN) classification method. Appl. Comput. Inform. 12, 90\u2013108 (2016)","journal-title":"Appl. Comput. Inform."},{"key":"762_CR2","doi-asserted-by":"crossref","unstructured":"Anagnostopoulos, C., Triantafillou, P.: Learning set cardinality in distance nearest neighbours. In: ICDM, pp. 691\u2013696. IEEE (2015)","DOI":"10.1109\/ICDM.2015.17"},{"key":"762_CR3","unstructured":"Andoni, A., Indyk P., Laarhoven T., Razenshteyn I., Schmidt, L.: Practical and optimal LSH for angular distance. arXiv preprint arXiv:1509.02897 (2015)"},{"issue":"6","key":"762_CR4","doi-asserted-by":"publisher","first-page":"1247","DOI":"10.1109\/TPAMI.2014.2361319","volume":"37","author":"A Babenko","year":"2014","unstructured":"Babenko, A., Lempitsky, V.: The inverted multi-index. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1247\u20131260 (2014)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"762_CR5","unstructured":"Babenko, A., Lempitsky, V.: Efficient indexing of billion-scale datasets of deep descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2055\u20132063 (2016)"},{"key":"762_CR6","doi-asserted-by":"publisher","first-page":"509","DOI":"10.1145\/361002.361007","volume":"18","author":"JL Bentley","year":"1975","unstructured":"Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509\u2013517 (1975)","journal-title":"Commun. ACM"},{"key":"762_CR7","doi-asserted-by":"publisher","first-page":"61","DOI":"10.14257\/ijdta.2014.7.1.06","volume":"7","author":"V Bijalwan","year":"2014","unstructured":"Bijalwan, V., Kumar, V., Kumari, P., Pascual, J.: $$k$$NN based machine learning approach for text and document mining. Int. J. Database Theory Appl. 7, 61\u201370 (2014)","journal-title":"Int. J. Database Theory Appl."},{"volume-title":"Backpropagation: Theory, Architectures, and Applications","year":"1995","author":"Y Chauvin","key":"762_CR8","unstructured":"Chauvin, Y., Rumelhart, D.E.: Backpropagation: Theory, Architectures, and Applications. Psychology Press, London (1995)"},{"key":"762_CR9","doi-asserted-by":"crossref","unstructured":"Chen, L., \u00d6zsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491\u2013502 (2005)","DOI":"10.1145\/1066157.1066213"},{"key":"762_CR10","unstructured":"Chen, Q., Wang, H., Li, M., Ren, G., Li, S., Zhu, J., Li, J., Liu, C., Zhang, L., Wang, J.: SPTAG: a library for fast approximate nearest neighbor search (2018)"},{"key":"762_CR11","doi-asserted-by":"crossref","unstructured":"Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Symposium on Computational Geometry, pp. 253\u2013262 (2004)","DOI":"10.1145\/997817.997857"},{"key":"762_CR12","unstructured":"Dong, Y., Indyk, P., Razenshteyn, I., Wagner, T.: Learning space partitions for nearest neighbor search. In: ICLR (2020)"},{"issue":"1","key":"762_CR13","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/0377-2217(87)90165-2","volume":"28","author":"K Dudzi\u0144ski","year":"1987","unstructured":"Dudzi\u0144ski, K., Walukiewicz, S.: Exact methods for the knapsack problem and its generalizations. Eur. J. Oper. Res. 28(1), 3\u201321 (1987)","journal-title":"Eur. J. Oper. Res."},{"key":"762_CR14","unstructured":"Fu, C., Wang, C., Cai, D.: Satellite system graph: towards the efficiency up-boundary of graph-based approximate nearest neighbor search. CoRR, arXiv:1907.06146 (2019)"},{"key":"762_CR15","first-page":"461","volume":"12","author":"C Fu","year":"2019","unstructured":"Fu, C., Xiang, C., Wang, C., Cai, D.: Fast approximate nearest neighbor search with the navigating spreading-out graph. VLDB 12, 461\u2013474 (2019)","journal-title":"VLDB"},{"issue":"14\u201315","key":"762_CR16","doi-asserted-by":"publisher","first-page":"2627","DOI":"10.1016\/S1352-2310(97)00447-0","volume":"32","author":"MW Gardner","year":"1998","unstructured":"Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 32(14\u201315), 2627\u20132636 (1998)","journal-title":"Atmos. Environ."},{"key":"762_CR17","doi-asserted-by":"crossref","unstructured":"Ge, T., He, K., Ke, Q., Sun, J.: Optimized product quantization for approximate nearest neighbor search. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2946\u20132953 (2013)","DOI":"10.1109\/CVPR.2013.379"},{"key":"762_CR18","first-page":"518","volume":"99","author":"A Gionis","year":"1999","unstructured":"Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via hashing. VLDB 99, 518\u2013529 (1999)","journal-title":"VLDB"},{"key":"762_CR19","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1109\/MASSP.1984.1162229","volume":"1","author":"R Gray","year":"1984","unstructured":"Gray, R.: Vector quantization. IEEE Assp Mag. 1, 4\u201329 (1984)","journal-title":"IEEE Assp Mag."},{"key":"762_CR20","doi-asserted-by":"crossref","unstructured":"Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: $$k$$NN model-based approach in classification. In: OTM Confederated International Conferences \u201cOn the Move to Meaningful Internet Systems\u201d, pp. 986\u2013996 (2003)","DOI":"10.1007\/978-3-540-39964-3_62"},{"key":"762_CR21","doi-asserted-by":"crossref","unstructured":"Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: ACM (1984)","DOI":"10.1145\/602259.602266"},{"key":"762_CR22","first-page":"100","volume":"28","author":"JA Hartigan","year":"1979","unstructured":"Hartigan, J.A., Wong, M.A.: Algorithm as 136: a $$k$$-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28, 100\u2013108 (1979)","journal-title":"J. R. Stat. Soc. Ser. C (Appl. Stat.)"},{"key":"762_CR23","doi-asserted-by":"publisher","DOI":"10.1201\/9781420075779","volume-title":"Logistic Regression Models","author":"JM Hilbe","year":"2009","unstructured":"Hilbe, J.M.: Logistic Regression Models. Chapman and Hall\/CRC, Boca Raton (2009)"},{"key":"762_CR24","first-page":"1","volume":"9","author":"Q Huang","year":"2015","unstructured":"Huang, Q., Feng, J., Zhang, Y., Fang, Q., Ng, W.: Query-aware locality-sensitive hashing for approximate nearest neighbor search. VLDB 9, 1\u201312 (2015)","journal-title":"VLDB"},{"key":"762_CR25","doi-asserted-by":"crossref","unstructured":"Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: ACM Symposium on Theory of Computing, pp. 604\u2013613 (1998)","DOI":"10.1145\/276698.276876"},{"issue":"1","key":"762_CR26","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1109\/TPAMI.2010.57","volume":"33","author":"H Jegou","year":"2010","unstructured":"Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117\u2013128 (2010)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"762_CR27","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1109\/TPAMI.2010.57","volume":"33","author":"H J\u00e9gou","year":"2011","unstructured":"J\u00e9gou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 117\u2013128 (2011)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"762_CR28","doi-asserted-by":"crossref","unstructured":"J\u00e9gou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors: re-rank with source coding. In: ICASSP, pp. 861\u2013864 (2011)","DOI":"10.1109\/ICASSP.2011.5946540"},{"issue":"3","key":"762_CR29","doi-asserted-by":"publisher","first-page":"535","DOI":"10.1109\/TBDATA.2019.2921572","volume":"7","author":"J Johnson","year":"2019","unstructured":"Johnson, J., Douze, M., J\u00e9gou, H.: Billion-scale similarity search with gpus. IEEE Trans. Big Data 7(3), 535\u2013547 (2019)","journal-title":"IEEE Trans. Big Data"},{"key":"762_CR30","doi-asserted-by":"crossref","unstructured":"Kalantidis, Y., Avrithis, Y.: Locally optimized product quantization for approximate nearest neighbor search. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2321\u20132328 (2014)","DOI":"10.1109\/CVPR.2014.298"},{"key":"762_CR31","doi-asserted-by":"publisher","unstructured":"Kellerer, H., Pferschy, U., Pisinger, D.: The multiple-choice knapsack problem. In: Knapsack Problems, pp. 317\u2013347. Springer, Berlin, Heidelberg (2004). https:\/\/doi.org\/10.1007\/978-3-540-24777-7_11","DOI":"10.1007\/978-3-540-24777-7_11"},{"key":"762_CR32","doi-asserted-by":"crossref","unstructured":"Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: SIGMOD, pp. 489\u2013504 (2018)","DOI":"10.1145\/3183713.3196909"},{"key":"762_CR33","doi-asserted-by":"crossref","unstructured":"Li, C., Zhang, M., Andersen, D.G., He, Y.: Improving approximate nearest neighbor search through learned adaptive early termination. In: SIGMOD, pp. 2539\u20132554 (2020)","DOI":"10.1145\/3318464.3380600"},{"key":"762_CR34","doi-asserted-by":"crossref","unstructured":"Li, P., Lu, H., Zheng, Q., Yang, L., Pan, G.: Lisa: a learned index structure for spatial data. In: SIGMOD, pp. 2119\u20132133 (2020)","DOI":"10.1145\/3318464.3389703"},{"key":"762_CR35","doi-asserted-by":"publisher","first-page":"1475","DOI":"10.1109\/TKDE.2019.2909204","volume":"32","author":"W Li","year":"2019","unstructured":"Li, W., Zhang, Y., Sun, Y., Wang, W., Li, M., Zhang, W., Lin, X.: Approximate nearest neighbor search on high dimensional data-experiments, analyses, and improvement. IEEE Trans. Knowl. Data Eng. 32, 1475\u20131488 (2019)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"762_CR36","unstructured":"Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient indexing for high-dimensional similarity search. In: 33rd International Conference on Very Large Data Bases, VLDB 2007, pp. 950\u2013961. Association for Computing Machinery, Inc. (2007)"},{"key":"762_CR37","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1016\/j.is.2013.10.006","volume":"45","author":"Y Malkov","year":"2014","unstructured":"Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest neighbor algorithm based on navigable small world graphs. Inf. Syst. 45, 61\u201368 (2014)","journal-title":"Inf. Syst."},{"key":"762_CR38","doi-asserted-by":"publisher","first-page":"824","DOI":"10.1109\/TPAMI.2018.2889473","volume":"42","author":"YA Malkov","year":"2018","unstructured":"Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42, 824\u2013836 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"762_CR39","doi-asserted-by":"publisher","first-page":"2227","DOI":"10.1109\/TPAMI.2014.2321376","volume":"36","author":"M Muja","year":"2014","unstructured":"Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2227\u20132240 (2014)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"762_CR40","unstructured":"Omohundro, S.M.: Five balltree construction algorithms. In: International Computer Science Institute Berkeley (1989)"},{"key":"762_CR41","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, pp. 1532\u20131543 (2014)","DOI":"10.3115\/v1\/D14-1162"},{"issue":"12","key":"762_CR42","first-page":"3437","volume":"13","author":"J Qin","year":"2020","unstructured":"Qin, J., Wang, W., Xiao, C., Zhang, Y.: Similarity query processing for high-dimensional data. VLDB 13(12), 3437\u20133440 (2020)","journal-title":"VLDB"},{"key":"762_CR43","doi-asserted-by":"crossref","unstructured":"Robinson, J.T.: The KDB-tree: a search structure for large multidimensional dynamic indexes. In: SIGMOD, pp. 10\u201318 (1981)","DOI":"10.1145\/582318.582321"},{"key":"762_CR44","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1006\/jvci.1999.0413","volume":"10","author":"Y Rui","year":"1999","unstructured":"Rui, Y., Huang, T.S., Chang, S.-F.: Image retrieval: current techniques, promising directions, and open issues. J. Vis. Commun. Image Represent. 10, 39\u201362 (1999)","journal-title":"J. Vis. Commun. Image Represent."},{"key":"762_CR45","doi-asserted-by":"crossref","unstructured":"Shamos, M.I., Hoey, D.: Closest-point problems. In: Symposium on Foundations of Computer Science, pp. 151\u2013162 (1975)","DOI":"10.1109\/SFCS.1975.8"},{"key":"762_CR46","doi-asserted-by":"crossref","unstructured":"Suchal, J., N\u00e1vrat, P.: Full text search engine as scalable $$k$$-nearest neighbor recommendation system. In: International Conference on Artificial Intelligence in Theory and Practice, pp. 165\u2013173 (2010)","DOI":"10.1007\/978-3-642-15286-3_16"},{"key":"762_CR47","doi-asserted-by":"crossref","unstructured":"Sun, J., Li, G., Tang, N.: Learned cardinality estimation for similarity queries. In: SIGMOD, pp. 1745\u20131757 (2021)","DOI":"10.1145\/3448016.3452790"},{"key":"762_CR48","first-page":"1","volume":"8","author":"Y Sun","year":"2014","unstructured":"Sun, Y., Wang, W., Qin, J., Zhang, Y., Lin, X.: SRS: solving c-approximate nearest neighbor queries in high dimensional Euclidean space with a tiny index. VLDB 8, 1\u201312 (2014)","journal-title":"VLDB"},{"key":"762_CR49","first-page":"1930","volume":"6","author":"N Sundaram","year":"2013","unstructured":"Sundaram, N., Turmukhametova, A., Satish, N., Mostak, T., Indyk, P., Madden, S., Dubey, P.: Streaming similarity search over one billion tweets using parallel locality-sensitive hashing. VLDB 6, 1930\u20131941 (2013)","journal-title":"VLDB"},{"key":"762_CR50","doi-asserted-by":"crossref","unstructured":"Wang, H., Fu, X., Xu, J., Lu, H.: Learned index for spatial queries. In: MDM, pp. 569\u2013574. IEEE (2019)","DOI":"10.1109\/MDM.2019.00121"},{"key":"762_CR51","doi-asserted-by":"crossref","unstructured":"Wang, Y., Xiao, C., Qin, J., Cao, X., Sun, Y., Wang, W., Onizuka, M.: Monotonic cardinality estimation of similarity selection: a deep learning approach. In: SIGMOD, pp. 1197\u20131212 (2020)","DOI":"10.1145\/3318464.3380570"},{"key":"762_CR52","first-page":"194","volume":"98","author":"R Weber","year":"1998","unstructured":"Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. VLDB 98, 194\u2013205 (1998)","journal-title":"VLDB"},{"key":"762_CR53","first-page":"3152","volume":"13","author":"C Wei","year":"2020","unstructured":"Wei, C., Wu, B., Wang, S., Lou, R., Zhan, C., Li, F., Cai, Y.: Analyticdb-v: a hybrid analytical engine towards query fusion for structured and unstructured data. VLDB 13, 3152\u20133165 (2020)","journal-title":"VLDB"},{"key":"762_CR54","doi-asserted-by":"crossref","unstructured":"Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient in-memory spatial analytics. In: SIGMOD, pp. 1071\u20131085 (2016)","DOI":"10.1145\/2882903.2915237"},{"key":"762_CR55","doi-asserted-by":"crossref","unstructured":"Yang, W., Li, T., Fang, G., Wei, H.: Pase: postgresql ultra-high-dimensional approximate nearest neighbor search extension. In: SIGMOD, pp. 2241\u20132253 (2020)","DOI":"10.1145\/3318464.3386131"},{"key":"762_CR56","doi-asserted-by":"crossref","unstructured":"Yao, B., Li, F., Kumar, P.: $$K$$ nearest neighbor queries and $$k$$NN-joins in large relational databases (almost) for free. In: IEEE International Conference on Data Engineering (ICDE), pp. 4\u201315 (2010)","DOI":"10.1109\/ICDE.2010.5447837"},{"key":"762_CR57","doi-asserted-by":"crossref","unstructured":"Yu, J., Wu, J., Sarwat, M.: Geospark: a cluster computing framework for processing large-scale spatial data. In: ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1\u20134 (2015)","DOI":"10.1145\/2820783.2820860"},{"key":"762_CR58","first-page":"1","volume":"8","author":"S Zhang","year":"2017","unstructured":"Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D.: Learning $$k$$ for $$k$$NN classification. ACM Trans. Intell. Syst. Technol. (TIST) 8, 1\u201319 (2017)","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"key":"762_CR59","doi-asserted-by":"crossref","unstructured":"Zhang, W., Li, D., Xu, Y., Zhang, Y.: Shuffle-efficient distributed locality sensitive hashing on spark. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 766\u2013767 (2016)","DOI":"10.1109\/INFCOMW.2016.7562179"}],"container-title":["The VLDB Journal"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00778-022-00762-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00778-022-00762-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00778-022-00762-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,3]],"date-time":"2024-10-03T18:17:32Z","timestamp":1727979452000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00778-022-00762-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9,12]]},"references-count":59,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2023,5]]}},"alternative-id":["762"],"URL":"https:\/\/doi.org\/10.1007\/s00778-022-00762-0","relation":{},"ISSN":["1066-8888","0949-877X"],"issn-type":[{"type":"print","value":"1066-8888"},{"type":"electronic","value":"0949-877X"}],"subject":[],"published":{"date-parts":[[2022,9,12]]},"assertion":[{"value":"23 May 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 June 2022","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 August 2022","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 September 2022","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}