{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T03:17:34Z","timestamp":1740107854232,"version":"3.37.3"},"reference-count":56,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2023,4,7]],"date-time":"2023-04-07T00:00:00Z","timestamp":1680825600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,4,7]],"date-time":"2023-04-07T00:00:00Z","timestamp":1680825600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62276118","62276118","62276118"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimedia Systems"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1007\/s00530-023-01080-3","type":"journal-article","created":{"date-parts":[[2023,4,7]],"date-time":"2023-04-07T08:02:41Z","timestamp":1680854561000},"page":"1967-1980","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Shallow multi-branch attention convolutional neural network for micro-expression recognition"],"prefix":"10.1007","volume":"29","author":[{"given":"Gang","family":"Wang","sequence":"first","affiliation":[]},{"given":"Shucheng","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Zhe","family":"Tao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,7]]},"reference":[{"issue":"2","key":"1080_CR1","first-page":"5","volume":"1","author":"P Ekman","year":"2009","unstructured":"Ekman, P.: Lie catching and microexpressions. Philos. Decept. 1(2), 5 (2009)","journal-title":"Philos. Decept."},{"key":"1080_CR2","first-page":"5826","volume":"44","author":"X Ben","year":"2021","unstructured":"Ben, X., Ren, Y., Zhang, J., Wang, S.-J., Kpalma, K., Meng, W., Liu, Y.-J.: Video-based facial micro-expression analysis: a survey of datasets, features and algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 44, 5826\u20135846 (2021)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"1080_CR3","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1007\/s10919-013-0159-8","volume":"37","author":"W-Jing Yan","year":"2013","unstructured":"Yan, W-Jing., Qi, Wu., Liang, J., Chen, Y.-H., Xiaolan, F.: How fast are the leaked facial expressions: The duration of micro-expressions. J. Nonverbal Behav. 37(4), 217\u2013230 (2013)","journal-title":"J. Nonverbal Behav."},{"key":"1080_CR4","doi-asserted-by":"crossref","unstructured":"Li J, Dong Z, Lu S, Wang S-J, Yan W-J, Ma Y, Liu Y, Huang C, Fu X: Cas (me) 3: A third generation facial spontaneous micro-expression database with depth information and high ecological validity. IEEE Transactions on Pattern Analysis and Machine Intelligence. 45, 2782\u20132800 (2022)","DOI":"10.1109\/TPAMI.2022.3174895"},{"key":"1080_CR5","unstructured":"Frank M, Herbasz M, Sinuk K, Keller A, Nolan C: I see how you feel: Training laypeople and professionals to recognize fleeting emotions. In The Annual Meeting of the International Communication Association. Sheraton New York, New York City, pages 1\u201335, (2009)"},{"issue":"6","key":"1080_CR6","doi-asserted-by":"publisher","first-page":"915","DOI":"10.1109\/TPAMI.2007.1110","volume":"29","author":"G Zhao","year":"2007","unstructured":"Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915\u2013928 (2007)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"1080_CR7","first-page":"82","volume":"62","author":"S-T Liong","year":"2018","unstructured":"Liong, S.-T., See, J., Wong, K., Phan, R.C.-W.: Less is more micro-expression recognition from video using apex frame. Signal Process. 62, 82\u201392 (2018)","journal-title":"Signal Process."},{"key":"1080_CR8","doi-asserted-by":"crossref","unstructured":"Kumar AJR, Bhanu B: Micro-expression classification based on landmark relations with graph attention convolutional network. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pages 1511\u20131520, (2021)","DOI":"10.1109\/CVPRW53098.2021.00167"},{"issue":"4","key":"1080_CR9","first-page":"1","volume":"31","author":"Wu Hao-Yu","year":"2012","unstructured":"Hao-Yu, Wu., Rubinstein, Michael, Shih, Eugene, Guttag, John, Durand, Fr\u00e9do., Freeman, William: Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graphics (TOG) 31(4), 1\u20138 (2012)","journal-title":"ACM Trans. Graphics (TOG)"},{"issue":"1","key":"1080_CR10","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1587\/transinf.E96.D.81","volume":"96","author":"S Polikovsky","year":"2013","unstructured":"Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expression detection in hi-speed video based on facial action coding system (facs). IEICE Trans. Inf. Syst. 96(1), 81\u201392 (2013)","journal-title":"IEICE Trans. Inf. Syst."},{"key":"1080_CR11","volume-title":"What the face reveals: basic and applied studies of spontaneous expression using the facial action coding System (FACS)","author":"EL Rosenberg","year":"2020","unstructured":"Rosenberg, E.L., Ekman, P.: What the face reveals: basic and applied studies of spontaneous expression using the facial action coding System (FACS). Oxford University Press, Oxford (2020)"},{"issue":"4","key":"1080_CR12","doi-asserted-by":"publisher","first-page":"299","DOI":"10.1109\/TAFFC.2015.2485205","volume":"7","author":"Y-J Liu","year":"2015","unstructured":"Liu, Y.-J., Zhang, J.-K., Yan, W.-J., Wang, S.-J., Zhao, G., Xiaolan, F.: A main directional mean optical flow feature for spontaneous micro-expression recognition. IEEE Trans. Affective Comput. 7(4), 299\u2013310 (2015)","journal-title":"IEEE Trans. Affective Comput."},{"key":"1080_CR13","doi-asserted-by":"publisher","first-page":"543","DOI":"10.1146\/annurev-vision-093019-111701","volume":"7","author":"AJ O\u2019Toole","year":"2021","unstructured":"O\u2019Toole, A.J., Castillo, C.D.: Face recognition by humans and machines: three fundamental advances from deep learning. Ann. Rev Vis. Sci. 7, 543\u2013570 (2021)","journal-title":"Ann. Rev Vis. Sci."},{"key":"1080_CR14","doi-asserted-by":"crossref","unstructured":"Bouguettaya A, Zarzour H, Kechida A, Taberkit AM: Vehicle detection from uav imagery with deep learning: a review. IEEE Transactions on Neural Networks and Learning Systems. 33, 6047\u20136067 (2021)","DOI":"10.1109\/TNNLS.2021.3080276"},{"issue":"4","key":"1080_CR15","doi-asserted-by":"publisher","first-page":"1331","DOI":"10.1007\/s10044-018-0757-5","volume":"22","author":"J Li","year":"2019","unstructured":"Li, J., Wang, Y., See, J., Liu, W.: Micro-expression recognition based on 3d flow convolutional neural network. Pattern Anal. Appl. 22(4), 1331\u20131339 (2019)","journal-title":"Pattern Anal. Appl."},{"key":"1080_CR16","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1109\/TIP.2020.3035042","volume":"30","author":"Y Li","year":"2020","unstructured":"Li, Y., Huang, X., Zhao, G.: Joint local and global information learning with single apex frame detection for micro-expression recognition. IEEE Trans. Image Process. 30, 249\u2013263 (2020)","journal-title":"IEEE Trans. Image Process."},{"key":"1080_CR17","doi-asserted-by":"crossref","unstructured":"Van Quang N, Chun J, Tokuyama T: Capsulenet for micro-expression recognition. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pages 1\u20137. IEEE, (2019)","DOI":"10.1109\/FG.2019.8756544"},{"key":"1080_CR18","doi-asserted-by":"publisher","first-page":"1037","DOI":"10.1109\/TAFFC.2020.2986962","volume":"13","author":"B Sun","year":"2020","unstructured":"Sun, B., Cao, S., Li, D., He, J., Yu, L.: Dynamic micro-expression recognition using knowledge distillation. IEEE Trans. Affect. Comput. 13, 1037\u20131043 (2020)","journal-title":"IEEE Trans. Affect. Comput."},{"key":"1080_CR19","doi-asserted-by":"publisher","first-page":"110149","DOI":"10.1109\/ACCESS.2022.3214808","volume":"10","author":"G Wang","year":"2022","unstructured":"Wang, G., Huang, S., Dong, Z.: Haphazard cuboids feature extraction for micro-expression recognition. IEEE Access 10, 110149\u2013110162 (2022)","journal-title":"IEEE Access"},{"key":"1080_CR20","doi-asserted-by":"crossref","unstructured":"Dong Z, Wang G, Lu S, Yan W-J, Wang S-J: A brief guide: Code for spontaneous expressions and micro-expressions in videos. In Proceedings of the 1st Workshop on Facial Micro-Expression: Advanced Techniques for Facial Expressions Generation and Spotting, pages 31\u201337 (2021)","DOI":"10.1145\/3476100.3484464"},{"key":"1080_CR21","doi-asserted-by":"crossref","unstructured":"Dong Z, Wang G, Lu S, Li J, Yan W, Wang S-J: Spontaneous facial expressions and micro-expressions coding: From brain to face. Front. Psychol. 12, 5808 (2022)","DOI":"10.3389\/fpsyg.2021.784834"},{"key":"1080_CR22","doi-asserted-by":"crossref","unstructured":"Pfister T, Li X, Zhao G, Pietik\u00e4inen M: Recognising spontaneous facial micro-expressions. In 2011 international conference on computer vision, pages 1449\u20131456. IEEE, (2011)","DOI":"10.1109\/ICCV.2011.6126401"},{"issue":"12","key":"1080_CR23","doi-asserted-by":"publisher","first-page":"6034","DOI":"10.1109\/TIP.2015.2496314","volume":"24","author":"S-J Wang","year":"2015","unstructured":"Wang, S.-J., Yan, W.-J., Li, X., Zhao, G., Zhou, C.-G., Xiaolan, F., Yang, M., Tao, J.: Micro-expression recognition using color spaces. IEEE Trans. Image Process. 24(12), 6034\u20136047 (2015)","journal-title":"IEEE Trans. Image Process."},{"key":"1080_CR24","doi-asserted-by":"publisher","first-page":"564","DOI":"10.1016\/j.neucom.2015.10.096","volume":"175","author":"X Huang","year":"2016","unstructured":"Huang, X., Zhao, G., Hong, X., Zheng, W., Pietik\u00e4inen, M.: Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns. Neurocomputing 175, 564\u2013578 (2016)","journal-title":"Neurocomputing"},{"issue":"1","key":"1080_CR25","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1109\/TAFFC.2017.2713359","volume":"10","author":"X Huang","year":"2017","unstructured":"Huang, X., Wang, S.-J., Liu, X., Zhao, G., Feng, X., Pietik\u00e4inen, M.: Discriminative spatiotemporal local binary pattern with revisited integral projection for spontaneous facial micro-expression recognition. IEEE Trans. Affective Comput. 10(1), 32\u201347 (2017)","journal-title":"IEEE Trans. Affective Comput."},{"key":"1080_CR26","doi-asserted-by":"publisher","first-page":"1745","DOI":"10.3389\/fpsyg.2017.01745","volume":"8","author":"M Peng","year":"2017","unstructured":"Peng, M., Wang, C., Chen, T., Liu, G., Xiaolan, F.: Dual temporal scale convolutional neural network for micro-expression recognition. Front. Psychol. 8, 1745 (2017)","journal-title":"Front. Psychol."},{"key":"1080_CR27","doi-asserted-by":"crossref","unstructured":"Khor H-Q, See J, Liong S-T, Phan RCW, Lin W: Dual-stream shallow networks for facial micro-expression recognition. In 2019 IEEE international conference on image processing (ICIP), pages 36\u201340. IEEE, (2019)","DOI":"10.1109\/ICIP.2019.8802965"},{"key":"1080_CR28","doi-asserted-by":"publisher","first-page":"354","DOI":"10.1016\/j.neucom.2020.06.005","volume":"410","author":"C Wang","year":"2020","unstructured":"Wang, C., Peng, M., Bi, T., Chen, T.: Micro-attention for micro-expression recognition. Neurocomputing 410, 354\u2013362 (2020)","journal-title":"Neurocomputing"},{"key":"1080_CR29","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1016\/j.neucom.2021.03.058","volume":"448","author":"S Zhao","year":"2021","unstructured":"Zhao, S., Tao, H., Zhang, Y., Tong, X., Zhang, K., Hao, Z., Chen, E.: A two-stage 3d cnn based learning method for spontaneous micro-expression recognition. Neurocomputing 448, 276\u2013289 (2021)","journal-title":"Neurocomputing"},{"key":"1080_CR30","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1016\/j.neucom.2016.02.063","volume":"208","author":"S Huang","year":"2016","unstructured":"Huang, S., Zhuang, L.: Exponential discriminant locality preserving projection for face recognition. Neurocomputing 208, 373\u2013377 (2016)","journal-title":"Neurocomputing"},{"key":"1080_CR31","first-page":"129","volume":"74","author":"YS Gan","year":"2019","unstructured":"Gan, Y.S., Liong, S.-T., Yau, W.-C., Huang, Y.-C., Tan, L.-K.: Off-apexnet on micro-expression recognition system. Signal Processing 74, 129\u2013139 (2019)","journal-title":"Signal Processing"},{"key":"1080_CR32","doi-asserted-by":"crossref","unstructured":"See J, Yap MH, Li J, Hong X, Wang S-J: Megc 2019\u2013the second facial micro-expressions grand challenge. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pages 1\u20135. IEEE, (2019)","DOI":"10.1109\/FG.2019.8756611"},{"key":"1080_CR33","doi-asserted-by":"crossref","unstructured":"Liu Y, Du H, Zheng L, Gedeon T: A neural micro-expression recognizer. In 2019 14th IEEE international conference on automatic face & gesture recognition (FG 2019), pages 1\u20134. IEEE, (2019)","DOI":"10.1109\/FG.2019.8756583"},{"key":"1080_CR34","doi-asserted-by":"crossref","unstructured":"Liong S-T, Gan YS, See J, Khor H-Q, Huang Y-C: Shallow triple stream three-dimensional cnn (ststnet) for micro-expression recognition. In 2019 14th IEEE international conference on automatic face & gesture recognition (FG 2019), pages 1\u20135. IEEE, (2019)","DOI":"10.1109\/FG.2019.8756567"},{"key":"1080_CR35","doi-asserted-by":"crossref","unstructured":"Zhou L, Mao Q, Xue L: Dual-inception network for cross-database micro-expression recognition. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pages 1\u20135. IEEE, (2019)","DOI":"10.1109\/FG.2019.8756579"},{"key":"1080_CR36","doi-asserted-by":"publisher","first-page":"8590","DOI":"10.1109\/TIP.2020.3018222","volume":"29","author":"Z Xia","year":"2020","unstructured":"Xia, Z., Peng, W., Khor, H.-Q., Feng, X., Zhao, G.: Revealing the invisible with model and data shrinking for composite-database micro-expression recognition. IEEE Trans. Image Process. 29, 8590\u20138605 (2020)","journal-title":"IEEE Trans. Image Process."},{"key":"1080_CR37","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1016\/j.neucom.2020.10.082","volume":"427","author":"X Nie","year":"2021","unstructured":"Nie, X., Takalkar, M.A., Duan, M., Zhang, H., Xu, M.: Geme: dual-stream multi-task gender-based micro-expression recognition. Neurocomputing 427, 13\u201328 (2021)","journal-title":"Neurocomputing"},{"key":"1080_CR38","doi-asserted-by":"crossref","unstructured":"Chen B, Liu K-H, Xu Y, Wu Qi-Q, Yao J-F: Block division convolutional network with implicit deep features augmentation for micro-expression recognition. IEEE Transactions on Multimedia (2022)","DOI":"10.1109\/TMM.2022.3141616"},{"key":"1080_CR39","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s41095-021-0261-5","volume":"8","author":"M-H Guo","year":"2022","unstructured":"Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, Tai-Jiang., Zhang, Song-Hai., Martin, Ralph R., Cheng, Ming-Ming., Hu, Shi-Min.: Attention mechanisms in computer vision: a survey. Comput. Vis. Media 8, 1\u201338 (2022)","journal-title":"Comput. Vis. Media"},{"key":"1080_CR40","doi-asserted-by":"crossref","unstructured":"Hu J, Shen L, Sun G: Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7132\u20137141. (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"1080_CR41","doi-asserted-by":"crossref","unstructured":"Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q: Eca-net: Efficient channel attention for deep convolutional neural networks. In 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11531\u201311539, (2020)","DOI":"10.1109\/CVPR42600.2020.01155"},{"key":"1080_CR42","doi-asserted-by":"crossref","unstructured":"Woo S, Park J, Lee J-Y, Kweon IS: Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV), pages 3\u201319, (2018)","DOI":"10.1007\/978-3-030-01234-2_1"},{"issue":"4","key":"1080_CR43","doi-asserted-by":"publisher","first-page":"384","DOI":"10.1037\/0003-066X.48.4.384","volume":"48","author":"P Ekman","year":"1993","unstructured":"Ekman, P.: Facial expression and emotion. Am. Psychol. 48(4), 384 (1993)","journal-title":"Am. Psychol."},{"key":"1080_CR44","doi-asserted-by":"crossref","unstructured":"Li X, Pfister T, Huang X, Zhao G, Pietik\u00e4inen M: A spontaneous micro-expression database: Inducement, collection and baseline. In 2013 10th IEEE International Conference and Workshops on Automatic face and gesture recognition (fg), pages 1\u20136. IEEE, (2013)","DOI":"10.1109\/FG.2013.6553717"},{"key":"1080_CR45","doi-asserted-by":"crossref","unstructured":"Liong S-T, See J, Wong K, Le Ngo AC, Oh Y-H, Phan R: Automatic apex frame spotting in micro-expression database. In 2015 3rd IAPR Asian conference on pattern recognition (ACPR), pages 665\u2013669. IEEE, (2015)","DOI":"10.1109\/ACPR.2015.7486586"},{"key":"1080_CR46","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2021.108275","volume":"122","author":"L Zhou","year":"2022","unstructured":"Zhou, L., Mao, Q., Huang, X., Zhang, F., Zhang, Z.: Feature refinement: an expression-specific feature learning and fusion method for micro-expression recognition. Pattern Recogn. 122, 108275 (2022)","journal-title":"Pattern Recogn."},{"issue":"1","key":"1080_CR47","doi-asserted-by":"publisher","first-page":"e86041","DOI":"10.1371\/journal.pone.0086041","volume":"9","author":"W-J Yan","year":"2014","unstructured":"Yan, W.-J., Li, X., Wang, S.-J., Zhao, G., Liu, Y.-J., Chen, Yu-Hsin., Xiaolan, Fu.: Casme ii: an improved spontaneous micro-expression database and the baseline evaluation. PloS One 9(1), e86041 (2014)","journal-title":"PloS One"},{"issue":"1","key":"1080_CR48","doi-asserted-by":"publisher","first-page":"116","DOI":"10.1109\/TAFFC.2016.2573832","volume":"9","author":"AK Davison","year":"2018","unstructured":"Davison, A.K., Lansley, C., Costen, N., Tan, K., Yap, M.H.: Samm: a spontaneous micro-facial movement dataset. IEEE Trans. Affect. Comput. 9(1), 116\u2013129 (2018)","journal-title":"IEEE Trans. Affect. Comput."},{"key":"1080_CR49","doi-asserted-by":"publisher","first-page":"214","DOI":"10.1007\/978-3-540-74936-3_22","volume-title":"Joint pattern recognition symposium","author":"C Zach","year":"2007","unstructured":"Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime tv-l 1 optical flow. In: Joint pattern recognition symposium, pp. 214\u2013223. Springer, New York (2007)"},{"key":"1080_CR50","doi-asserted-by":"crossref","unstructured":"Sun D, Roth S, Black MJ: Secrets of optical flow estimation and their principles. In 2010 IEEE computer society conference on computer vision and pattern recognition, pages 2432\u20132439. IEEE, (2010)","DOI":"10.1109\/CVPR.2010.5539939"},{"key":"1080_CR51","doi-asserted-by":"crossref","unstructured":"Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1\u20139. (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"1080_CR52","unstructured":"Loshchilov I, Hutter F: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, (2017)"},{"issue":"6","key":"1080_CR53","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Communications of the ACM 60(6), 84\u201390 (2017)","journal-title":"Communications of the ACM"},{"key":"1080_CR54","unstructured":"Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, (2016)"},{"key":"1080_CR55","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770\u2013778, (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"1080_CR56","doi-asserted-by":"crossref","unstructured":"Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, Van Der\u00a0Smagt, P, Cremers D, Brox T: Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE international conference on computer vision, pages 2758\u20132766, (2015)","DOI":"10.1109\/ICCV.2015.316"}],"container-title":["Multimedia Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00530-023-01080-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00530-023-01080-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00530-023-01080-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,17]],"date-time":"2024-10-17T22:00:18Z","timestamp":1729202418000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00530-023-01080-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,7]]},"references-count":56,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2023,8]]}},"alternative-id":["1080"],"URL":"https:\/\/doi.org\/10.1007\/s00530-023-01080-3","relation":{},"ISSN":["0942-4962","1432-1882"],"issn-type":[{"type":"print","value":"0942-4962"},{"type":"electronic","value":"1432-1882"}],"subject":[],"published":{"date-parts":[[2023,4,7]]},"assertion":[{"value":"16 December 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 March 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 April 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}