{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T04:25:07Z","timestamp":1726806307093},"reference-count":47,"publisher":"Springer Science and Business Media LLC","issue":"30","license":[{"start":{"date-parts":[[2024,7,30]],"date-time":"2024-07-30T00:00:00Z","timestamp":1722297600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,7,30]],"date-time":"2024-07-30T00:00:00Z","timestamp":1722297600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"Groupe BPCE"},{"name":"ANRT - CIFRE"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Comput & Applic"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1007\/s00521-024-10163-9","type":"journal-article","created":{"date-parts":[[2024,7,30]],"date-time":"2024-07-30T14:02:48Z","timestamp":1722348168000},"page":"18583-18611","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Exploring accuracy and interpretability trade-off in tabular learning with novel attention-based models"],"prefix":"10.1007","volume":"36","author":[{"ORCID":"http:\/\/orcid.org\/0009-0008-5448-1168","authenticated-orcid":false,"given":"Kodjo Mawuena","family":"Amekoe","sequence":"first","affiliation":[]},{"given":"Hanane","family":"Azzag","sequence":"additional","affiliation":[]},{"given":"Zaineb Chelly","family":"Dagdia","sequence":"additional","affiliation":[]},{"given":"Mustapha","family":"Lebbah","sequence":"additional","affiliation":[]},{"given":"Gregoire","family":"Jaffre","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,7,30]]},"reference":[{"key":"10163_CR1","unstructured":"Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser \u0141, Polosukhin I (2017) Attention is all you need. Advances in neural information processing systems 30"},{"key":"10163_CR2","doi-asserted-by":"crossref","unstructured":"Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp 785\u2013794","DOI":"10.1145\/2939672.2939785"},{"key":"10163_CR3","unstructured":"Somepalli G, Goldblum M, Schwarzschild A, Bruss CB, Goldstein T (2021) Saint: Improved neural networks for tabular data via row attention and contrastive pre-training. arXiv preprint arXiv:2106.01342"},{"key":"10163_CR4","first-page":"28742","volume":"34","author":"J Kossen","year":"2021","unstructured":"Kossen J, Band N, Lyle C, Gomez AN, Rainforth T, Gal Y (2021) Self-attention between datapoints: going beyond individual input-output pairs in deep learning. Adv Neural Inf Process Syst 34:28742\u201328756","journal-title":"Adv Neural Inf Process Syst"},{"key":"10163_CR5","unstructured":"Huang X, Khetan A, Cvitkovic M, Karnin Z (2020) Tabtransformer: Tabular data modeling using contextual embeddings. arXiv preprint arXiv:2012.06678"},{"key":"10163_CR6","first-page":"18932","volume":"34","author":"Y Gorishniy","year":"2021","unstructured":"Gorishniy Y, Rubachev I, Khrulkov V, Babenko A (2021) Revisiting deep learning models for tabular data. Adv Neural Inf Process Syst 34:18932\u201318943","journal-title":"Adv Neural Inf Process Syst"},{"key":"10163_CR7","unstructured":"Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. Advances in neural information processing systems 30"},{"key":"10163_CR8","doi-asserted-by":"crossref","unstructured":"Ribeiro MT, Singh S, Guestrin C (2016) \" why should i trust you?\" explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1135\u20131144","DOI":"10.1145\/2939672.2939778"},{"issue":"1","key":"10163_CR9","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1038\/s42256-019-0138-9","volume":"2","author":"SM Lundberg","year":"2020","unstructured":"Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee S-I (2020) From local explanations to global understanding with explainable AI for trees. Nat Mach Intell 2(1):56\u201367","journal-title":"Nat Mach Intell"},{"key":"10163_CR10","unstructured":"Amoukou SI, Sala\u00fcn T, Brunel N (2022) Accurate shapley values for explaining tree-based models. In: International Conference on Artificial Intelligence and Statistics. PMLR, pp 2448\u20132465"},{"key":"10163_CR11","unstructured":"Kumar IE, Venkatasubramanian S, Scheidegger C, Friedler S (2020) Problems with shapley-value-based explanations as feature importance measures. In: International Conference on Machine Learning. PMLR, pp 5491\u20135500"},{"issue":"5","key":"10163_CR12","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1038\/s42256-019-0048-x","volume":"1","author":"C Rudin","year":"2019","unstructured":"Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 1(5):206\u2013215","journal-title":"Nat Mach Intell"},{"key":"10163_CR13","unstructured":"Nori H, Jenkins S, Koch P, Caruana R (2019) Interpretml: A unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223"},{"key":"10163_CR14","first-page":"4699","volume":"34","author":"R Agarwal","year":"2021","unstructured":"Agarwal R, Melnick L, Frosst N, Zhang X, Lengerich B, Caruana R, Hinton GE (2021) Neural additive models: interpretable machine learning with neural nets. Adv Neural Inf Process Syst 34:4699\u20134711","journal-title":"Adv Neural Inf Process Syst"},{"key":"10163_CR15","unstructured":"Chang C-H, Caruana R, Goldenberg A (2021) Node-gam: Neural generalized additive model for interpretable deep learning. arXiv preprint arXiv:2106.01613"},{"key":"10163_CR16","first-page":"507","volume":"35","author":"L Grinsztajn","year":"2022","unstructured":"Grinsztajn L, Oyallon E, Varoquaux G (2022) Why do tree-based models still outperform deep learning on typical tabular data? Adv Neural Inf Process Syst 35:507\u2013520","journal-title":"Adv Neural Inf Process Syst"},{"key":"10163_CR17","unstructured":"Amekoe KM, Azzag H, Lebbah M, Dagdia ZC, Jaffre G (2023) A new class of intelligible models for tabular learning. In: The 5th International Workshop on eXplainable Knowledge Discovery in Data Mining (PKDD)-ECML-PKDD"},{"key":"10163_CR18","doi-asserted-by":"crossref","unstructured":"Amekoe KM, Dilmi MD, Azzag H, Dagdia ZC, Lebbah M, Jaffre G (2023) Tabsra: An attention based self-explainable model for tabular learning. In: The 31th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN)","DOI":"10.14428\/esann\/2023.ES2023-37"},{"issue":"1","key":"10163_CR19","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman L (2001) Random forests. Mach Learn 45(1):5\u201332","journal-title":"Mach Learn"},{"key":"10163_CR20","unstructured":"Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y (2017) Lightgbm: a highly efficient gradient boosting decision tree. Advances in neural information processing systems 30"},{"key":"10163_CR21","unstructured":"Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2018) Catboost: unbiased boosting with categorical features. Advances in neural information processing systems 31"},{"key":"10163_CR22","unstructured":"Chen K-Y, Chiang P-H, Chou H-R, Chen T-W, Chang T-H (2023) Trompt: Towards a better deep neural network for tabular data. arXiv preprint arXiv:2305.18446"},{"key":"10163_CR23","unstructured":"Borisov V, Leemann T, Se\u00dfler K, Haug J, Pawelczyk M, Kasneci G (2021) Deep neural networks and tabular data: A survey. arXiv preprint arXiv:2110.01889"},{"key":"10163_CR24","unstructured":"McElfresh D, Khandagale S, Valverde J, Prasad C V, Ramakrishnan G, Goldblum M, White C (2023) When do neural nets outperform boosted trees on tabular data? arXiv e-prints, 2305"},{"key":"10163_CR25","doi-asserted-by":"crossref","unstructured":"Huang X, Marques-Silva J (2023) The inadequacy of shapley values for explainability. arXiv preprint arXiv:2302.08160","DOI":"10.1016\/j.ijar.2023.109112"},{"key":"10163_CR26","doi-asserted-by":"crossref","unstructured":"Ribeiro MT, Singh S, Guestrin C (2018) Anchors: High-precision model-agnostic explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 32","DOI":"10.1609\/aaai.v32i1.11491"},{"key":"10163_CR27","doi-asserted-by":"crossref","unstructured":"Marques-Silva J, Ignatiev A (2022) Delivering trustworthy ai through formal xai. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 36. pp 12342\u201312350","DOI":"10.1609\/aaai.v36i11.21499"},{"issue":"6","key":"10163_CR28","doi-asserted-by":"publisher","first-page":"590","DOI":"10.1038\/s42256-023-00657-x","volume":"5","author":"H Chen","year":"2023","unstructured":"Chen H, Covert IC, Lundberg SM, Lee S-I (2023) Algorithms to estimate shapley value feature attributions. Nat Mach Intell 5(6):590\u2013601","journal-title":"Nat Mach Intell"},{"key":"10163_CR29","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2021.108192","volume":"120","author":"Z Yang","year":"2021","unstructured":"Yang Z, Zhang A, Sudjianto A (2021) Gami-net: an explainable neural network based on generalized additive models with structured interactions. Pattern Recogn 120:108192","journal-title":"Pattern Recogn"},{"key":"10163_CR30","doi-asserted-by":"crossref","unstructured":"Lou Y, Caruana R, Gehrke J, Hooker G (2013) Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp 623\u2013631","DOI":"10.1145\/2487575.2487579"},{"key":"10163_CR31","unstructured":"Popov S, Morozov S, Babenko A (2019) Neural oblivious decision ensembles for deep learning on tabular data. arXiv preprint arXiv:1909.06312"},{"key":"10163_CR32","doi-asserted-by":"crossref","unstructured":"Chen Z, Tan S, Nori H, Inkpen K, Lou Y, Caruana R (2021) Using explainable boosting machines (ebms) to detect common flaws in data. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, pp 534\u2013551","DOI":"10.1007\/978-3-030-93736-2_40"},{"key":"10163_CR33","unstructured":"Alvarez-Melis D, Jaakkola TS (2018) On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049"},{"key":"10163_CR34","unstructured":"Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J et al (2013) Api design for machine learning software: experiences from the scikit-learn project. arXiv preprint arXiv:1309.0238"},{"key":"10163_CR35","doi-asserted-by":"crossref","unstructured":"Ignatiev A, Izza Y, Stuckey PJ, Marques-Silva J (2022) Using maxsat for efficient explanations of tree ensembles. In: AAAI","DOI":"10.1609\/aaai.v36i4.20292"},{"key":"10163_CR36","unstructured":"Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: International Conference on Machine Learning. PMLR, pp 3145\u20133153"},{"key":"10163_CR37","unstructured":"Alvarez\u00a0Melis D, Jaakkola T (2018) Towards robust interpretability with self-explaining neural networks. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds) Advances in Neural Information Processing Systems, vol 31. Curran Associates, Inc"},{"key":"10163_CR38","unstructured":"Agarwal C, Johnson N, Pawelczyk M, Krishna S, Saxena E, Zitnik M, Lakkaraju H (2022) Rethinking Stability for Attribution-based Explanations"},{"key":"10163_CR39","doi-asserted-by":"crossref","unstructured":"Davis J, Goadrich M (2006) The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine Learning. pp 233\u2013240","DOI":"10.1145\/1143844.1143874"},{"key":"10163_CR40","doi-asserted-by":"crossref","unstructured":"Wistuba M, Schilling N, Schmidt-Thieme L (2015) Learning hyperparameter optimization initializations. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE, pp 1\u201310","DOI":"10.1109\/DSAA.2015.7344817"},{"key":"10163_CR41","first-page":"24991","volume":"35","author":"Y Gorishniy","year":"2022","unstructured":"Gorishniy Y, Rubachev I, Babenko A (2022) On embeddings for numerical features in tabular deep learning. Adv Neural Inf Process Syst 35:24991\u201325004","journal-title":"Adv Neural Inf Process Syst"},{"key":"10163_CR42","unstructured":"Lengerich B, Tan S, Chang C-H, Hooker G, Caruana R (2020) Purifying interaction effects with the functional anova: An efficient algorithm for recovering identifiable additive models. In: International Conference on Artificial Intelligence and Statistics. PMLR, pp 2402\u20132412"},{"key":"10163_CR43","doi-asserted-by":"crossref","unstructured":"M\u00fcller S, Toborek V, Beckh K, Jakobs M, Bauckhage C, Welke P (2023) An Empirical Evaluation of the Rashomon Effect in Explainable Machine Learning","DOI":"10.1007\/978-3-031-43418-1_28"},{"key":"10163_CR44","unstructured":"Kim H, Papamakarios G, Mnih A (2021) The lipschitz constant of self-attention. In: International Conference on Machine Learning. PMLR, pp 5562\u20135571"},{"key":"10163_CR45","unstructured":"Ultsch A (2005) Clustering wih som: U* c. Proc, Workshop on Self-Organizing Maps"},{"key":"10163_CR46","unstructured":"Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al (2019) Pytorch: an imperative style, high-performance deep learning library. Advances in neural information processing systems 32"},{"key":"10163_CR47","unstructured":"Biewald L (2020) Experiment Tracking with Weights and Biases. Software available from wandb.com. https:\/\/www.wandb.com\/"}],"container-title":["Neural Computing and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-024-10163-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00521-024-10163-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-024-10163-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:38:50Z","timestamp":1726763930000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00521-024-10163-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7,30]]},"references-count":47,"journal-issue":{"issue":"30","published-print":{"date-parts":[[2024,10]]}},"alternative-id":["10163"],"URL":"https:\/\/doi.org\/10.1007\/s00521-024-10163-9","relation":{},"ISSN":["0941-0643","1433-3058"],"issn-type":[{"type":"print","value":"0941-0643"},{"type":"electronic","value":"1433-3058"}],"subject":[],"published":{"date-parts":[[2024,7,30]]},"assertion":[{"value":"2 April 2024","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"28 June 2024","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 July 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no conflict of interest to declare that are relevant to the content of this article.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"All data supporting the findings of this study are available within the paper and its Supplementary Information.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Supplementary information"}}]}}