{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T03:20:42Z","timestamp":1740108042238,"version":"3.37.3"},"reference-count":69,"publisher":"Springer Science and Business Media LLC","issue":"26","license":[{"start":{"date-parts":[[2024,5,25]],"date-time":"2024-05-25T00:00:00Z","timestamp":1716595200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,5,25]],"date-time":"2024-05-25T00:00:00Z","timestamp":1716595200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Comput & Applic"],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1007\/s00521-024-09967-6","type":"journal-article","created":{"date-parts":[[2024,5,25]],"date-time":"2024-05-25T03:31:57Z","timestamp":1716607917000},"page":"16289-16318","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Automated heart disease prediction using improved explainable learning-based technique"],"prefix":"10.1007","volume":"36","author":[{"given":"Pierre Claver","family":"Bizimana","sequence":"first","affiliation":[]},{"given":"Zuping","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Alphonse Houssou","family":"Hounye","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6423-9809","authenticated-orcid":false,"given":"Muhammad","family":"Asim","sequence":"additional","affiliation":[]},{"given":"Mohamed","family":"Hammad","sequence":"additional","affiliation":[]},{"given":"Ahmed A. Abd","family":"El-Latif","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,25]]},"reference":[{"key":"9967_CR1","doi-asserted-by":"publisher","DOI":"10.1007\/s11042-023-17051-9","author":"PC Bizimana","year":"2023","unstructured":"Bizimana PC, Zhang Z, Asim M, El-Latif AAA, Hammad M (2023) Learning-based techniques for heart disease prediction: a survey of models and performance metrics. Multimed Tools Appl. https:\/\/doi.org\/10.1007\/s11042-023-17051-9","journal-title":"Multimed Tools Appl"},{"key":"9967_CR2","doi-asserted-by":"publisher","DOI":"10.1038\/nrcardio.2014.26","author":"ND Wong","year":"2014","unstructured":"Wong ND (2014) Epidemiological studies of chd and the evolution of preventive cardiology. Nat Rev Cardiol. https:\/\/doi.org\/10.1038\/nrcardio.2014.26","journal-title":"Nat Rev Cardiol"},{"key":"9967_CR3","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1038\/nrcardio.2010.165","volume":"8","author":"AL Bui","year":"2011","unstructured":"Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8:30\u201341. https:\/\/doi.org\/10.1038\/nrcardio.2010.165","journal-title":"Nat Rev Cardiol"},{"key":"9967_CR4","doi-asserted-by":"publisher","first-page":"508","DOI":"10.1093\/eurheartj\/ehx628","volume":"39","author":"A Timmis","year":"2018","unstructured":"Timmis A, Townsend N, Gale C, Grobbee R (2018) European society of cardiology: cardiovascular disease statistics 2017. Eur Heart J 39:508\u2013579. https:\/\/doi.org\/10.1093\/eurheartj\/ehx628","journal-title":"Eur Heart J"},{"key":"9967_CR5","doi-asserted-by":"publisher","DOI":"10.1161\/CIR.0000000000000950","author":"SS Virani","year":"2021","unstructured":"Virani SS, Alonso A, Aparicio HJ, Benjamin EJ (2021) American heart association council on epidemiology and prevention statistics committee and stroke statistics subcommittee heart disease and stroke statistics-2021 update: A report from the american heart association. Circulation. https:\/\/doi.org\/10.1161\/CIR.0000000000000950","journal-title":"Circulation"},{"key":"9967_CR6","doi-asserted-by":"publisher","first-page":"2372","DOI":"10.1016\/j.jacc.2022.11.001","volume":"80","author":"M Lindstrom","year":"2022","unstructured":"Lindstrom M, DeCleene N, Dorsey HFV (2022) Global burden of cardiovascular diseases and risks collaboration, 1990\u20132021. J Am College Cardiol 80:2372\u20132425. https:\/\/doi.org\/10.1016\/j.jacc.2022.11.001","journal-title":"J Am College Cardiol"},{"key":"9967_CR7","first-page":"363","volume":"33","author":"J Lopez-Sendon","year":"2011","unstructured":"Lopez-Sendon J (2011) The heart failure epidemic. Medicographia 33:363\u2013369","journal-title":"Medicographia"},{"key":"9967_CR8","doi-asserted-by":"publisher","first-page":"933","DOI":"10.1161\/CIR.0b013e31820a55f5","volume":"123","author":"PA Heidenreich","year":"2011","unstructured":"Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PWF, Woo YJ (2011) Forecasting the future of cardiovascular disease in the united states: a policy statement from the American heart association. Circulation 123:933\u2013944. https:\/\/doi.org\/10.1161\/CIR.0b013e31820a55f5","journal-title":"Circulation"},{"key":"9967_CR9","unstructured":"World Health\u00a0Organization W (2021) Cardiovascular diseases,(cvds)-key facts. Available: https:\/\/www.who.int\/health-topics\/cardiovascular-diseases"},{"key":"9967_CR10","doi-asserted-by":"publisher","first-page":"1928","DOI":"10.1161\/CIR.0b013e31824f2173","volume":"125","author":"LA Allen","year":"2012","unstructured":"Allen LA, Stevenson LW, Grady KL, Goldstein NE, Matlock DD, Arnold RM, Cook NR, Felker GM, Francis GS, Hauptman PJ, Havranek EP, Krumholz HM, Mancini D, Riegel B, Spertus JA (2012) Decision making in advanced heart failure a scientific statement from the American heart association. Circulation 125:1928\u20131952. https:\/\/doi.org\/10.1161\/CIR.0b013e31824f2173","journal-title":"Circulation"},{"key":"9967_CR11","doi-asserted-by":"publisher","first-page":"176","DOI":"10.4236\/jilsa.2013.53019","volume":"5","author":"SH Ghwanmeh","year":"2013","unstructured":"Ghwanmeh SH, Mohammad AH, Al-Ibrahim AMH (2013) Innovative artificial neural networks-based decision support system for heart diseases diagnosis. J Intell Learn Syst Appl 5:176\u2013183. https:\/\/doi.org\/10.4236\/jilsa.2013.53019 (https:\/\/api.semanticscholar.org\/CorpusID:39354893)","journal-title":"J Intell Learn Syst Appl"},{"key":"9967_CR12","first-page":"150","volume":"8","author":"QK Al-Shayea","year":"2011","unstructured":"Al-Shayea QK (2011) Artificial neural networks in medical diagnosis. Int J Comput Sci Issues 8:150\u2013154","journal-title":"Int J Comput Sci Issues"},{"key":"9967_CR13","doi-asserted-by":"publisher","DOI":"10.1186\/2047-2501-2-3","author":"W Raghupathi","year":"2014","unstructured":"Raghupathi W, Raghupathi V (2014) Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. https:\/\/doi.org\/10.1186\/2047-2501-2-3","journal-title":"Health Inf Sci Syst"},{"key":"9967_CR14","doi-asserted-by":"publisher","unstructured":"Amrane M, Oukid S, Gagaoua I, Ensari T (2018) Breast cancer classification using machine learning. In: 2018 electric electronics, computer science. biomedical engineerings\u2019 Meeting (EBBT), pp 1\u20134. https:\/\/doi.org\/10.1109\/EBBT.2018.8391453https:\/\/api.semanticscholar.org\/CorpusID:49331250","DOI":"10.1109\/EBBT.2018.8391453"},{"key":"9967_CR15","doi-asserted-by":"publisher","unstructured":"Palaniappan S, Awang R (2008) Intelligent heart disease prediction system using data mining techniques. IEEE\/ACS international conference on computer systems and applications. vol 2008, pp 108\u2013115. https:\/\/doi.org\/10.1109\/AICCSA.2008.4493524","DOI":"10.1109\/AICCSA.2008.4493524"},{"issue":"5","key":"9967_CR16","doi-asserted-by":"publisher","first-page":"304","DOI":"10.1016\/0002-9149(89)90524-9","volume":"64","author":"R Detrano","year":"1989","unstructured":"Detrano R, Janosi A, Steinbrunn W, Pfisterer M, Schmid J-J, Sandhu S, Guppy KH, Lee S, Froelicher V (1989) International application of a new probability algorithm for the diagnosis of coronary artery disease. Am J Cardiol 64(5):304\u2013310. https:\/\/doi.org\/10.1016\/0002-9149(89)90524-9","journal-title":"Am J Cardiol"},{"issue":"1","key":"9967_CR17","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/0004-3702(89)90046-5","volume":"40","author":"JH Gennari","year":"1989","unstructured":"Gennari JH, Langley P, Fisher D (1989) Models of incremental concept formation. Artif Intell 40(1):11\u201361. https:\/\/doi.org\/10.1016\/0004-3702(89)90046-5 (https:\/\/www.sciencedirect.com\/science\/article\/pii\/0004370289900465)","journal-title":"Artif Intell"},{"key":"9967_CR18","doi-asserted-by":"publisher","first-page":"551","DOI":"10.1007\/s10115-017-1059-8.","volume":"53","author":"Y Li","year":"2017","unstructured":"Li Y, Li T, Liu H (2017) Recent advances in feature selection and its applications. Knowl Inf Syst 53:551\u2013577. https:\/\/doi.org\/10.1007\/s10115-017-1059-8. (https:\/\/api.semanticscholar.org\/CorpusID:10834194)","journal-title":"Knowl Inf Syst"},{"key":"9967_CR19","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1109\/MIS.2017.38","volume":"32","author":"J Li","year":"2016","unstructured":"Li J, Liu H (2016) Challenges of feature selection for big data analytics. IEEE Intell Syst 32:9\u201315. https:\/\/doi.org\/10.1109\/MIS.2017.38 (https:\/\/api.semanticscholar.org\/CorpusID:23565)","journal-title":"IEEE Intell Syst"},{"key":"9967_CR20","doi-asserted-by":"publisher","unstructured":"Montazeri AH, Emami SK, Zaghiyan MR, Eslamian S (2023) Chapter 23 - stochastic learning algorithms. In: Eslamian S, Eslamian F (eds) Handbook of hydroinformatics, Elsevier, pp 385\u2013410. https:\/\/doi.org\/10.1016\/B978-0-12-821285-1.00016-6","DOI":"10.1016\/B978-0-12-821285-1.00016-6"},{"key":"9967_CR21","doi-asserted-by":"publisher","unstructured":"Raschka S (2018) Model evaluation, model selection, and algorithm selection in machine learning. ArXiv, arXiv:1811.12808, https:\/\/doi.org\/10.48550\/arXiv.1811.12808.. Available: https:\/\/api.semanticscholar.org\/CorpusID:49529756","DOI":"10.48550\/arXiv.1811.12808."},{"key":"9967_CR22","doi-asserted-by":"publisher","DOI":"10.13140\/RG.2.2.16604.92800","author":"N Gupta","year":"2021","unstructured":"Gupta N, Dharmale G, Parmar D (2021) Heart disease prediction using machine learning. J Emerg Technol Innov Res. https:\/\/doi.org\/10.13140\/RG.2.2.16604.92800","journal-title":"J Emerg Technol Innov Res"},{"key":"9967_CR23","doi-asserted-by":"publisher","unstructured":"Trisal A, Sagar V, Jameel R (2022) Cardiac disease prediction using machine learning algorithms. In: 2022 international conference on computational intelligence and sustainable engineering solutions. pp 583\u2013589 Available: https:\/\/doi.org\/10.1109\/CISES54857.2022.9844370","DOI":"10.1109\/CISES54857.2022.9844370"},{"key":"9967_CR24","doi-asserted-by":"publisher","unstructured":"Singh A, Kumar R (2020) Heart disease prediction using machine learning algorithms. In: International conference on electrical and electronics engineering (ICE3). pp. 452\u2013457, Available: https:\/\/doi.org\/10.1109\/ICE348803.2020.9122958","DOI":"10.1109\/ICE348803.2020.9122958"},{"key":"9967_CR25","doi-asserted-by":"crossref","unstructured":"Cherradi B, Terrada O, Ouhmida A, Hamida S, Raihani A, Bouattane O (2021) Computer-aided diagnosis system for early prediction of atherosclerosis using machine learning and k-fold cross-validation. In: International congress of advanced technology and engineering (ICOTEN). IEEE, vol 2021, pp 1\u20139","DOI":"10.1109\/ICOTEN52080.2021.9493524"},{"key":"9967_CR26","doi-asserted-by":"publisher","unstructured":"Jha KK, Jha A, Rathore K (2021) Forecasting of heart diseases in early stages using machine learning approaches. In: International conference on forensics, analytics, big data, security (FABS). pp 1\u20135, Available: https:\/\/doi.org\/10.1109\/FABS52071.2021.9702665","DOI":"10.1109\/FABS52071.2021.9702665"},{"key":"9967_CR27","doi-asserted-by":"publisher","first-page":"714","DOI":"10.1016\/j.future.2019.09.056","volume":"111","author":"H Ahmed","year":"2020","unstructured":"Ahmed H, Younis MG, Hendawi AM (2020) Heart disease identification from patients social posts, machine learning solution on spark. Futur Gener Comput Syst 111:714\u2013722. https:\/\/doi.org\/10.1016\/j.future.2019.09.056","journal-title":"Futur Gener Comput Syst"},{"key":"9967_CR28","doi-asserted-by":"publisher","unstructured":"Alim MA, Habib S, Farooq Y, Rafay A (2020) Robust heart disease prediction: a novel approach based on significant feature and ensemble learning model. In: 3rd international conference on computing, mathematics and Engineering Technologies (iCoMET). pp 1\u20135, Available: https:\/\/doi.org\/10.1109\/iCoMET48670.2020.9074135","DOI":"10.1109\/iCoMET48670.2020.9074135"},{"key":"9967_CR29","doi-asserted-by":"publisher","unstructured":"Williams R, Shongwe T, Hasan AN, Rameshar V (2021) Heart disease prediction using machine learning techniques. In: 2021 international conference on data analytics for business and industry (ICDABI). pp 118\u2013123 Available: https:\/\/doi.org\/10.1109\/ICDABI53623.2021.9655783","DOI":"10.1109\/ICDABI53623.2021.9655783"},{"key":"9967_CR30","doi-asserted-by":"publisher","first-page":"132","DOI":"10.22452\/mjcs.sp2022no1.10","volume":"22","author":"R Tr","year":"2022","unstructured":"Tr R, Kumar L, Simaiya S, Kaur A, Hamdi M (2022) Predictive analysis of heart diseases with machine learning approaches. Malays J Comput Sci 22:132\u2013148. https:\/\/doi.org\/10.22452\/mjcs.sp2022no1.10","journal-title":"Malays J Comput Sci"},{"key":"9967_CR31","doi-asserted-by":"crossref","unstructured":"Gupta A, Arora HS, Kumar R, Raman B (2021) Dmhz: a decision support system based on machine computational design for heart disease diagnosis using z-alizadeh sani dataset. In: 2021 International conference on information networking (ICOIN). IEEE, pp 818\u2013823","DOI":"10.1109\/ICOIN50884.2021.9333884"},{"key":"9967_CR32","doi-asserted-by":"crossref","unstructured":"Mahaveer, Puneet, Deepika (2022) Cardiovascular disease prediction analysis using classification techniques. In: 2022 IEEE Delhi section conference (DELCON). pp 1\u20136 Available: https:\/\/api.semanticscholar.org\/CorpusID:248267816","DOI":"10.1109\/DELCON54057.2022.9753356"},{"key":"9967_CR33","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2023.110521","volume":"269","author":"R Sheikhpour","year":"2023","unstructured":"Sheikhpour R, Berahmand K, Forouzandeh S (2023) Hessian-based semi-supervised feature selection using generalized uncorrelated constraint. Knowl-Based Syst 269:110521. https:\/\/doi.org\/10.1016\/j.knosys.2023.110521","journal-title":"Knowl-Based Syst"},{"key":"9967_CR34","doi-asserted-by":"publisher","first-page":"993","DOI":"10.3844\/jcssp.2022.993.1004","volume":"18","author":"D Swain","year":"2022","unstructured":"Swain D, Parmar B, Shah H, Gandhi A, Pradhan M, Kaur H, Acharya B (2022) Cardiovascular disease prediction using various machine learning algorithms. J Comput Sci 18:993\u20131004. https:\/\/doi.org\/10.3844\/jcssp.2022.993.1004","journal-title":"J Comput Sci"},{"key":"9967_CR35","doi-asserted-by":"publisher","first-page":"27","DOI":"10.12720\/jait.15.1.27-32","volume":"15","author":"A Hammoud","year":"2024","unstructured":"Hammoud A, Karaki A, Tafreshi R, Abdulla S, Wahid MF (2024) Coronary heart disease prediction: a comparative study of machine learning algorithms. J Adv Inf Technol 15:27\u201332. https:\/\/doi.org\/10.12720\/jait.15.1.27-32 (https:\/\/api.semanticscholar.org\/CorpusID:266880530)","journal-title":"J Adv Inf Technol"},{"key":"9967_CR36","doi-asserted-by":"publisher","unstructured":"Manikandan G, Pragadeesh B, Manojkumar V, Karthikeyan A, Manikandan R, Gandomi A (2024) Classification models combined with boruta feature selection for heart disease prediction. In: Informatics in Medicine Unlocked. vol\u00a044. Available: https:\/\/doi.org\/10.1016\/j.imu.2023.101442","DOI":"10.1016\/j.imu.2023.101442"},{"key":"9967_CR37","doi-asserted-by":"publisher","DOI":"10.1155\/2023\/3531420","author":"PC Bizimana","year":"2023","unstructured":"Bizimana PC, Zhang Z, Asim M, El-Latif AAA (2023) An effective machine learning-based model for an early heart disease prediction. Biomed Res Int. https:\/\/doi.org\/10.1155\/2023\/3531420 (https:\/\/api.semanticscholar.org\/CorpusID:258419929)","journal-title":"Biomed Res Int"},{"issue":"3","key":"9967_CR38","doi-asserted-by":"publisher","first-page":"311","DOI":"10.3390\/math10030311","volume":"10","author":"M Yuvali","year":"2022","unstructured":"Yuvali M, Yaman B, Tosun O (2022) Classification comparison of machine learning algorithms using two independent cad datasets. Mathematics 10(3):311","journal-title":"Mathematics"},{"key":"9967_CR39","doi-asserted-by":"publisher","unstructured":"Thakkar H Kumar, Shukla H, Patil S (2020) A comparative analysis of machine learning classifiers for robust heart disease prediction. In: 2020 IEEE 17th India council international conference (INDICON), pp 1\u20136 Available: https:\/\/doi.org\/10.1109\/INDICON49873.2020.9342444","DOI":"10.1109\/INDICON49873.2020.9342444"},{"issue":"1","key":"9967_CR40","doi-asserted-by":"publisher","DOI":"10.1088\/1742-6596\/2161\/1\/012013","volume":"2161","author":"C Gupta","year":"2022","unstructured":"Gupta C, Saha A, Reddy NVS, Acharya UD (2022) Cardiac disease prediction using supervised machine learning techniques. J Phys Conf Ser 2161(1):012013. https:\/\/doi.org\/10.1088\/1742-6596\/2161\/1\/012013","journal-title":"J Phys Conf Ser"},{"key":"9967_CR41","doi-asserted-by":"publisher","unstructured":"Vayadande K, Golawar R, Khairnar S, Dhiwar A, Wakchoure S, Bhoite S, Khadke D (2022) Heart disease prediction using machine learning and deep learning algorithms. In: 2022 International conference on computational intelligence and sustainable engineering solutions (CISES), pp 393\u2013401. Available: https:\/\/doi.org\/10.1109\/CISES54857.2022.9844406","DOI":"10.1109\/CISES54857.2022.9844406"},{"key":"9967_CR42","doi-asserted-by":"crossref","unstructured":"Gupta A, Kumar L, Jain R, Nagrath P (2020) Heart disease prediction using classification (naive bayes). Available: https:\/\/api.semanticscholar.org\/CorpusID:219066066","DOI":"10.1007\/978-981-15-3369-3_42"},{"key":"9967_CR43","doi-asserted-by":"crossref","unstructured":"Alotaibi SS, Almajid YA, Alsahali SF, Asalam N, Alotaibi MD, Ullah I, Altabee RM (2020) Automated prediction of coronary artery disease using random forest and na\u00efve bayes. In: 2020 international conference on advanced computer science and information systems (ICACSIS). IEEE, pp 109\u2013114","DOI":"10.1109\/ICACSIS51025.2020.9263159"},{"key":"9967_CR44","doi-asserted-by":"publisher","unstructured":"Yadav DP, Saini P, Mittal P (2021) Feature optimization based heart disease prediction using machine learning. In: 2021 5th international conference on information systems and computer networks (ISCON). pp. 1\u20135 Available: https:\/\/doi.org\/10.1109\/ISCON52037.2021.9702410","DOI":"10.1109\/ISCON52037.2021.9702410"},{"key":"9967_CR45","doi-asserted-by":"publisher","first-page":"107562","DOI":"10.1109\/ACCESS.2020.3001149","volume":"8","author":"JP Li","year":"2020","unstructured":"Li JP, Haq AU, Din SU, Khan J, Khan A, Saboor A (2020) Heart disease identification method using machine learning classification in e-healthcare. IEEE Access 8:107562\u2013107582. https:\/\/doi.org\/10.1109\/ACCESS.2020.3001149","journal-title":"IEEE Access"},{"key":"9967_CR46","doi-asserted-by":"publisher","DOI":"10.1155\/2022\/7529472","author":"K Phasinam","year":"2022","unstructured":"Phasinam K, Mondal T, Novaliendry D, Yang CH, Dutta C, Shabaz M (2022) Analyzing the performance of machine learning techniques in disease prediction. J Food Qual. https:\/\/doi.org\/10.1155\/2022\/7529472","journal-title":"J Food Qual"},{"key":"9967_CR47","doi-asserted-by":"crossref","unstructured":"Boukhatem C, Youssef HY, Nassif AB (2022) Heart disease prediction using machine learning. In: 2022 advances in science and engineering technology international conferences (ASET). pp 1\u20136 Available: https:\/\/api.semanticscholar.org\/CorpusID:247523956","DOI":"10.1109\/ASET53988.2022.9734880"},{"key":"9967_CR48","doi-asserted-by":"publisher","DOI":"10.35940\/ijitee.H9148.0711822","author":"J Gowri","year":"2022","unstructured":"Gowri J, Kamini R, Vaishnavi G, Thasvin S, Vaishna C (2022) Heart disease prediction using machine learning. Int J Innov Technol Explor Eng (IJITEE). https:\/\/doi.org\/10.35940\/ijitee.H9148.0711822","journal-title":"Int J Innov Technol Explor Eng (IJITEE)"},{"key":"9967_CR49","doi-asserted-by":"publisher","unstructured":"Hussain S, Nanda SK, Barigidad S, Akhtar S, Suaib M, Ray NK (2021) Novel deep learning architecture for predicting heart disease using cnn. In: 2021 19th OITS International Conference on Information Technology (OCIT). pp 353\u2013357. Available: https:\/\/doi.org\/10.1109\/OCIT53463.2021.00076","DOI":"10.1109\/OCIT53463.2021.00076"},{"key":"9967_CR50","doi-asserted-by":"publisher","first-page":"2244","DOI":"10.35940\/ijitee.C9009.019320","volume":"9","author":"S Sharma","year":"2020","unstructured":"Sharma S, Parmar M (2020) Heart diseases prediction using deep learning neural network model. Int J Innov Technol Explor Eng (IJITEE) 9:2244\u20132248. https:\/\/doi.org\/10.35940\/ijitee.C9009.019320","journal-title":"Int J Innov Technol Explor Eng (IJITEE)"},{"key":"9967_CR51","first-page":"484","volume":"8","author":"K Subhadra","year":"2019","unstructured":"Subhadra K, Vikas B (2019) Neural network based intelligent system for predicting heart disease. Int J Innov Technol Explor Eng (IJITEE) 8:484\u2013487","journal-title":"Int J Innov Technol Explor Eng (IJITEE)"},{"key":"9967_CR52","doi-asserted-by":"publisher","first-page":"375","DOI":"10.11591\/ijeecs.v29.i1.pp375-383","volume":"29","author":"R Sarra","year":"2023","unstructured":"Sarra R, Dinar A, Mohammed M (2023) Enhanced accuracy for heart disease prediction using artificial neural network. Indon J Electr Eng Comput Sci 29:375\u2013383. https:\/\/doi.org\/10.11591\/ijeecs.v29.i1.pp375-383 (https:\/\/doi.org\/10.11591\/ijeecs.v29.i1.pp375-383)","journal-title":"Indon J Electr Eng Comput Sci"},{"issue":"5","key":"9967_CR53","doi-asserted-by":"publisher","first-page":"269","DOI":"10.25046\/aj050533","volume":"5","author":"O Terrada","year":"2020","unstructured":"Terrada O, Hamida S, Cherradi B, Raihani A, Bouattane O (2020) Supervised machine learning based medical diagnosis support system for prediction of patients with heart disease. Adv Sci Technol Eng Syst J 5(5):269\u2013277","journal-title":"Adv Sci Technol Eng Syst J"},{"key":"9967_CR54","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiolchem.2022.107672","volume":"98","author":"HB Kibria","year":"2022","unstructured":"Kibria HB, Matin A (2022) The severity prediction of the binary and multi-class cardiovascular disease - a machine learning-based fusion approach. Comput Biol Chem 98:107672. https:\/\/doi.org\/10.1016\/j.compbiolchem.2022.107672 (https:\/\/doi.org\/10.1016\/j.compbiolchem.2022.107672)","journal-title":"Comput Biol Chem"},{"key":"9967_CR55","doi-asserted-by":"publisher","unstructured":"Alizadehsani R, Roshanzamir M, Sani Z (2017) Z-Alizadeh Sani. UCI Machine Learning Repository. https:\/\/doi.org\/10.24432\/C5Q31T (https:\/\/archive.ics.uci.edu\/dataset\/412\/z+alizadeh+sani)","DOI":"10.24432\/C5Q31T"},{"issue":"1","key":"9967_CR56","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1016\/j.cmpb.2013.03.004","volume":"111","author":"R Alizadehsani","year":"2013","unstructured":"Alizadehsani R, Habibi J, Hosseini MJ, Mashayekhi H, Boghrati R, Ghandeharioun A, Bahadorian B, Sani ZA (2013) A data mining approach for diagnosis of coronary artery disease. Comput Methods Progr Biomed 111(1):52\u201361. https:\/\/doi.org\/10.1016\/j.cmpb.2013.03.004 (https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0169260713000801)","journal-title":"Comput Methods Progr Biomed"},{"key":"9967_CR57","unstructured":"M\u00fcller AC, Guido S (2016) Introduction to Machine Learning with Python: a Guide for Data Scientists. O\u2019Reilly Media. [Online]. Available: https:\/\/www.oreilly.com\/library\/view\/introduction-to-machine\/9781449369880\/"},{"key":"9967_CR58","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-81935-4","volume-title":"An introduction to machine learning","author":"M Kubat","year":"2021","unstructured":"Kubat M (2021) An introduction to machine learning. Springer, Cham"},{"key":"9967_CR59","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman L (2001) Random forests. Machine learning 45:5\u201332. https:\/\/doi.org\/10.1023\/A:1010933404324","journal-title":"Random forests. Machine learning"},{"key":"9967_CR60","volume-title":"Hands-on gradient boosting with xgboost and scikit-learn: perform accessible machine learning and extreme gradient boosting with python","author":"C Wade","year":"2020","unstructured":"Wade C, Glynn K (2020) Hands-on gradient boosting with xgboost and scikit-learn: perform accessible machine learning and extreme gradient boosting with python. Packt Publishing, Birmingham"},{"key":"9967_CR61","volume-title":"Python machine learning: machine learning and deep learning with python, scikit-learn, and tensorflow 2","author":"S Raschka","year":"2019","unstructured":"Raschka S, Mirjalili V (2019) Python machine learning: machine learning and deep learning with python, scikit-learn, and tensorflow 2, 3rd edn. Packt Publishing, Birmingham","edition":"3"},{"key":"9967_CR62","volume-title":"Machine learning: a probabilistic perspective","author":"KP Murphy","year":"2012","unstructured":"Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge"},{"key":"9967_CR63","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511801389.008","author":"N Cristianini","year":"2000","unstructured":"Cristianini N, Shawe-Taylor J (2000) Cambridge University Press. Support vector machines. https:\/\/doi.org\/10.1017\/CBO9780511801389.008","journal-title":"Support vector machines"},{"key":"9967_CR64","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2021.104813","volume":"137","author":"K Wang","year":"2021","unstructured":"Wang K, Tian J, Zheng C, Yang H, Ren J, Liu Y, Han Q, Zhang Y (2021) Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and shap. Comput Biol Med 137:104813. https:\/\/doi.org\/10.1016\/j.compbiomed.2021.104813 (https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0010482521006077)","journal-title":"Comput Biol Med"},{"key":"9967_CR65","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.115736","volume":"186","author":"L Antwarg","year":"2021","unstructured":"Antwarg L, Miller RM, Shapira B, Rokach L (2021) Explaining anomalies detected by autoencoders using shapley additive explanations. Expert Syst Appl 186:115736. https:\/\/doi.org\/10.1016\/j.eswa.2021.115736 (https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0957417421011155)","journal-title":"Expert Syst Appl"},{"key":"9967_CR66","doi-asserted-by":"publisher","DOI":"10.48550\/arXiv.1705.07874","author":"SM Lundberg","year":"2017","unstructured":"Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. https:\/\/doi.org\/10.48550\/arXiv.1705.07874","journal-title":"Adv Neural Inf Process Syst"},{"key":"9967_CR67","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2021.104393","volume":"133","author":"I Neves","year":"2021","unstructured":"Neves I, Folgado D, Santos S, Barandas M, Campagner A, Ronzio L, Cabitza F, Gamboa H (2021) Interpretable heartbeat classification using local model-agnostic explanations on ecgs. Comput Biol Med 133:104393. https:\/\/doi.org\/10.1016\/j.compbiomed.2021.104393 (https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0010482521001876)","journal-title":"Comput Biol Med"},{"key":"9967_CR68","unstructured":"Zafar MR, Khan NM (2019) Dlime: a deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems. arXiv e-prints arXiv:1906.10263 Available: https:\/\/ui.adsabs.harvard.edu\/abs\/2019arXiv190610263R"},{"key":"9967_CR69","volume-title":"Designing experiments and analyzing data: a model comparison perspective","author":"HD Delaney","year":"2003","unstructured":"Delaney HD (2003) Designing experiments and analyzing data: a model comparison perspective. Routledge, Milton Park"}],"container-title":["Neural Computing and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-024-09967-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00521-024-09967-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-024-09967-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,23]],"date-time":"2024-08-23T18:10:53Z","timestamp":1724436653000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00521-024-09967-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5,25]]},"references-count":69,"journal-issue":{"issue":"26","published-print":{"date-parts":[[2024,9]]}},"alternative-id":["9967"],"URL":"https:\/\/doi.org\/10.1007\/s00521-024-09967-6","relation":{},"ISSN":["0941-0643","1433-3058"],"issn-type":[{"type":"print","value":"0941-0643"},{"type":"electronic","value":"1433-3058"}],"subject":[],"published":{"date-parts":[[2024,5,25]]},"assertion":[{"value":"7 November 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"3 May 2024","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 May 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no Conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}