{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T19:10:18Z","timestamp":1722539418290},"reference-count":27,"publisher":"Springer Science and Business Media LLC","issue":"17","license":[{"start":{"date-parts":[[2023,9,24]],"date-time":"2023-09-24T00:00:00Z","timestamp":1695513600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,9,24]],"date-time":"2023-09-24T00:00:00Z","timestamp":1695513600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100003399","name":"Science and Technology Commission of Shanghai Municipality","doi-asserted-by":"crossref","award":["22DZ1100800"],"id":[{"id":"10.13039\/501100003399","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Comput & Applic"],"published-print":{"date-parts":[[2024,6]]},"DOI":"10.1007\/s00521-023-08963-6","type":"journal-article","created":{"date-parts":[[2023,9,24]],"date-time":"2023-09-24T15:01:21Z","timestamp":1695567681000},"page":"9643-9660","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Monocular vehicle speed detection based on improved YOLOX and DeepSORT"],"prefix":"10.1007","volume":"36","author":[{"given":"Kaiyu","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Fei","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Haojun","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Meiyu","family":"Cai","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,24]]},"reference":[{"key":"8963_CR1","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1016\/j.procs.2020.02.046","volume":"166","author":"Y Liang","year":"2020","unstructured":"Liang Y, Li KL, Bi FH, Zhang K, Yang J (2020) Research on lfmcw radar velocity ranging optimization system based on fpga - sciencedirect. Procedia Comput Sci 166:187\u2013194","journal-title":"Procedia Comput Sci"},{"key":"8963_CR2","unstructured":"Xiaoyou YU, Chen X, Yang G (2015) A new vehicle-mounted radar range and velocity measurement approach in radar-communication integration system"},{"issue":"1","key":"8963_CR3","doi-asserted-by":"publisher","first-page":"408","DOI":"10.1109\/TITS.2011.2162627","volume":"13","author":"X Mao","year":"2012","unstructured":"Mao X, Inoue D, Kato S, Kagami M (2012) Amplitude-modulated laser radar for range and speed measurement in car applications. IEEE Trans Intell Transp Syst 13(1):408\u2013413","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"8963_CR4","doi-asserted-by":"crossref","unstructured":"Barros J, Oliveira L (2021) Deep speed estimation from synthetic and monocular data. In: 2021 IEEE intelligent vehicles symposium (IV), pp 668\u2013673","DOI":"10.1109\/IV48863.2021.9575291"},{"key":"8963_CR5","unstructured":"Ge Z, Liu S, Wang F, Li Z, Sun J (2021) Yolox: exceeding yolo series in 2021"},{"key":"8963_CR6","doi-asserted-by":"crossref","unstructured":"Wojke N, Bewley A, Paulus D (2017) Simple online and realtime tracking with a deep association metric. In: 2017 IEEE international conference on image processing (ICIP), 3645\u20133649","DOI":"10.1109\/ICIP.2017.8296962"},{"key":"8963_CR7","unstructured":"Bochkovskiy A, Wang CY, Liao H (2020) Yolov4: optimal speed and accuracy of object detection"},{"key":"8963_CR8","doi-asserted-by":"crossref","unstructured":"Ge Z, Liu S, Li Z, Yoshie O, Sun J (2021) OTA: optimal transport assignment for object detection. In: 2021 IEEE\/CVF conference on computer vision and pattern recognition (CVPR), 303\u2013312","DOI":"10.1109\/CVPR46437.2021.00037"},{"key":"8963_CR9","doi-asserted-by":"crossref","unstructured":"Zhang X, Zeng H, Guo S, Zhang L (2022) Efficient long-range attention network for image super-resolution. In: European conference on computer vision","DOI":"10.1007\/978-3-031-19790-1_39"},{"key":"8963_CR10","doi-asserted-by":"crossref","unstructured":"Wang C, Bochkovskiy A, Liao HM (2022) YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv, abs\/2207.02696","DOI":"10.1109\/CVPR52729.2023.00721"},{"key":"8963_CR11","doi-asserted-by":"crossref","unstructured":"Hu J, Shen L, Sun G (2017) Squeeze-and-excitation networks. In: 2018 IEEE\/CVF conference on computer vision and pattern recognition, 7132\u20137141","DOI":"10.1109\/CVPR.2018.00745"},{"key":"8963_CR12","doi-asserted-by":"crossref","unstructured":"Hou Q, Zhou D, Feng J (2021) Coordinate attention for efficient mobile network design. In: 2021 IEEE\/CVF conference on computer vision and pattern recognition (CVPR), 13708\u201313717","DOI":"10.1109\/CVPR46437.2021.01350"},{"key":"8963_CR13","doi-asserted-by":"crossref","unstructured":"Woo S, Park J, Lee J, Kweon I (2018) CBAM: convolutional block attention module. In: European conference on computer vision","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"8963_CR14","doi-asserted-by":"crossref","unstructured":"Wang Q, Wu B, Zhu PF, Li P, Zuo W, Hu Q (2019) ECA-net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE\/CVF conference on computer vision and pattern recognition (CVPR), pp 11531\u201311539","DOI":"10.1109\/CVPR42600.2020.01155"},{"key":"8963_CR15","doi-asserted-by":"crossref","unstructured":"Rezatofighi SH, Tsoi N, Gwak J, Sadeghian A, Reid ID, Savarese S (2019). Generalized intersection over union: a metric and a loss for bounding box regression. In: 2019 IEEE\/CVF conference on computer vision and pattern recognition (CVPR), 658\u2013666","DOI":"10.1109\/CVPR.2019.00075"},{"key":"8963_CR16","doi-asserted-by":"crossref","unstructured":"Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D (2019) Distance-IoU loss: faster and better learning for bounding box regression. In: AAAI conference on artificial intelligence","DOI":"10.1609\/aaai.v34i07.6999"},{"key":"8963_CR17","doi-asserted-by":"crossref","unstructured":"Bewley A, Ge Z, Ott L, Ramos FT, Upcroft B (2016) Simple online and realtime tracking. In: 2016 IEEE international conference on image processing (ICIP), pp 3464\u20133468","DOI":"10.1109\/ICIP.2016.7533003"},{"key":"8963_CR18","doi-asserted-by":"crossref","unstructured":"Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, Doll\u00e1r P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: European Conference on Computer Vision","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"8963_CR19","doi-asserted-by":"crossref","unstructured":"Cao Y, He Z, Wang L, Wang W, Yuan Y, Zhang D, et al (2021) VisDrone-DET2021: the vision meets drone object detection challenge results. In: International conference on computer vision. IEEE","DOI":"10.1109\/ICCVW54120.2021.00319"},{"key":"8963_CR20","doi-asserted-by":"crossref","unstructured":"Liu X, Liu W, Mei T, Ma H (2018) Provid: progressive and multimodal vehicle reidentification for large-scale urban surveillance. IEEE Trans Multimedia, 1\u20131","DOI":"10.1109\/TMM.2017.2751966"},{"key":"8963_CR21","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46475-6_53","volume-title":"A deep learning-based approach to progressive vehicle re-identification for urban surveillance","author":"X Liu","year":"2016","unstructured":"Liu X, Liu W, Mei T, Ma H (2016) A deep learning-based approach to progressive vehicle re-identification for urban surveillance. Springer, Berlin"},{"key":"8963_CR22","doi-asserted-by":"crossref","unstructured":"Liu X, Wu L, Ma H, Fu H (2016) Large-scale vehicle re-identification in urban surveillance videos. IEEE","DOI":"10.1109\/ICME.2016.7553002"},{"key":"8963_CR23","doi-asserted-by":"crossref","unstructured":"Sergios T (2015) Stochastic gradient descent. Mach Learn, 161\u2013231","DOI":"10.1016\/B978-0-12-801522-3.00005-7"},{"key":"8963_CR24","doi-asserted-by":"crossref","unstructured":"Lyu S, Chang MC, Carcagni P, Anisimov D, Bochinski E, Galasso F, et al (2017) UA-DETRAC 2017: report of AVSS2017 & IWT4S challenge on advanced traffic monitoring. In: 2018 15th IEEE international conference on advanced video and signal based surveillance (AVSS). IEEE Computer Society","DOI":"10.1109\/AVSS.2017.8078560"},{"key":"8963_CR25","doi-asserted-by":"crossref","unstructured":"Lyu S, Chang MC, Du D, Li W, Chung YS (2018) UA-DETRAC 2018: report of AVSS2018 and IWT4S challenge on advanced traffic monitoring. In: 2018 15th IEEE international conference on advanced video and signal based surveillance (AVSS). IEEE","DOI":"10.1109\/AVSS.2018.8639089"},{"key":"8963_CR26","doi-asserted-by":"crossref","unstructured":"Wen L, Du D, Cai Z, Lei Z, Chang MC, Qi H (2020) Ua-detrac: a new benchmark and protocol for multi-object detection and tracking. Academic Press","DOI":"10.1016\/j.cviu.2020.102907"},{"key":"8963_CR27","doi-asserted-by":"publisher","first-page":"146","DOI":"10.1016\/j.neucom.2022.07.042","volume":"506","author":"Y Zhang","year":"2021","unstructured":"Zhang Y, Ren W, Zhang Z, Jia Z, Wang L, Tan T (2021) Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 506:146\u2013157","journal-title":"Neurocomputing"}],"container-title":["Neural Computing and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-023-08963-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00521-023-08963-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-023-08963-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T08:05:19Z","timestamp":1716797119000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00521-023-08963-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9,24]]},"references-count":27,"journal-issue":{"issue":"17","published-print":{"date-parts":[[2024,6]]}},"alternative-id":["8963"],"URL":"https:\/\/doi.org\/10.1007\/s00521-023-08963-6","relation":{},"ISSN":["0941-0643","1433-3058"],"issn-type":[{"value":"0941-0643","type":"print"},{"value":"1433-3058","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,9,24]]},"assertion":[{"value":"21 April 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 August 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 September 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"Not applicable.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Informed consent"}},{"value":"Not applicable.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Institutional review board statement"}}]}}