{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T20:40:06Z","timestamp":1729888806228,"version":"3.28.0"},"reference-count":65,"publisher":"Springer Science and Business Media LLC","issue":"30","license":[{"start":{"date-parts":[[2023,8,7]],"date-time":"2023-08-07T00:00:00Z","timestamp":1691366400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,8,7]],"date-time":"2023-08-07T00:00:00Z","timestamp":1691366400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"National Natural Science Foundation of China under Grant","award":["61973065","52075531"]},{"name":"Fundamental Research Funds for the Central Universities of China under Grant","award":["N2104008"]},{"name":"Central Government Guides the Local Science And Technology Development Special Fund","award":["2021JH6\/10500129"]},{"name":"Innovative Talents Support Program of Liaoning Provincial Universities","award":["LR2020047"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Comput & Applic"],"published-print":{"date-parts":[[2023,10]]},"DOI":"10.1007\/s00521-023-08873-7","type":"journal-article","created":{"date-parts":[[2023,8,7]],"date-time":"2023-08-07T10:02:38Z","timestamp":1691402558000},"page":"22265-22280","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["TIM-SLR: a lightweight network for video isolated sign language recognition"],"prefix":"10.1007","volume":"35","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8296-8039","authenticated-orcid":false,"given":"Fei","family":"Wang","sequence":"first","affiliation":[]},{"given":"Libo","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Shuai","family":"Han","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,7]]},"reference":[{"key":"8873_CR1","doi-asserted-by":"crossref","unstructured":"Aich D, Al\u00a0Zubair A, Hasan K.\u00a0Z, Nath A.\u00a0D, Hasan Z (2020) \u201cA deep learning approach for recognizing bengali character sign langauage,\u201d In: 11th international conference on computing, communication and networking technologies (ICCCNT). IEEE, 2020, pp. 1\u20135","DOI":"10.1109\/ICCCNT49239.2020.9225429"},{"key":"8873_CR2","doi-asserted-by":"crossref","unstructured":"Hasan M.\u00a0M, Srizon A.\u00a0Y, Sayeed A, Hasan M.\u00a0A.\u00a0M (2020) \u201cClassification of sign language characters by applying a deep convolutional neural network.\u201d In: 2nd international conference on advanced information and communication technology (ICAICT). IEEE, 2020, pp. 434\u2013438","DOI":"10.1109\/ICAICT51780.2020.9333456"},{"key":"8873_CR3","unstructured":"T\u00f6ngi R (2021) \u201cApplication of transfer learning to sign language recognition using an inflated 3d deep convolutional neural network.\u201d arXiv preprint arXiv:2103.05111"},{"key":"8873_CR4","doi-asserted-by":"crossref","unstructured":"De\u00a0Coster M, Van\u00a0Herreweghe M, Dambre J (2021) \u201cIsolated sign recognition from rgb video using pose flow and self-attention.\u201d In: proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 3441\u20133450","DOI":"10.1109\/CVPRW53098.2021.00383"},{"key":"8873_CR5","unstructured":"Huang J, Zhou W, Li H, Li W, \u201cSign language recognition using 3d convolutional neural networks.\u201d In: (2015) IEEE international conference on multimedia and expo (ICME). IEEE 2015: 1\u20136"},{"key":"8873_CR6","unstructured":"Jing L, Vahdani E, Huenerfauth M, Tian Y (2019) \u201cRecognizing american sign language manual signs from rgb-d videos.\u201d arXiv preprint arXiv:1906.02851"},{"issue":"2","key":"8873_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s42979-021-00485-z","volume":"2","author":"PP Roy","year":"2021","unstructured":"Roy PP, Kumar P, Kim B-G (2021) An efficient sign language recognition (slr) system using Camshift tracker and hidden Markov model (hmm). SN Comput Sci 2(2):1\u201315","journal-title":"SN Comput Sci"},{"key":"8873_CR8","doi-asserted-by":"crossref","unstructured":"Huang J, Zhou W, Zhang Q, Li H, Li W (2018) \u201cVideo-based sign language recognition without temporal segmentation.\u201d In: proceedings of the AAAI conference on artificial intelligence, vol\u00a032, no\u00a01","DOI":"10.1609\/aaai.v32i1.11903"},{"key":"8873_CR9","doi-asserted-by":"crossref","unstructured":"Li H, Gao L, Han R, Wan L, Feng W (2020) \u201cKey action and joint ctc-attention based sign language recognition.\u201d In: ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp. 2348\u20132352","DOI":"10.1109\/ICASSP40776.2020.9054316"},{"key":"8873_CR10","doi-asserted-by":"crossref","unstructured":"Hao A, Min Y, Chen X (2021) \u201cSelf-mutual distillation learning for continuous sign language recognition.\u201d In: Proceedings of the IEEE\/CVF international conference on computer vision, pp. 11\u00a0303\u201311\u00a0312","DOI":"10.1109\/ICCV48922.2021.01111"},{"key":"8873_CR11","doi-asserted-by":"crossref","unstructured":"Min Y, Hao A, Chai X, Chen X (2021) \u201cVisual alignment constraint for continuous sign language recognition.\u201d In: proceedings of the IEEE\/CVF international conference on computer vision, pp. 11\u00a0542\u201311\u00a0551","DOI":"10.1109\/ICCV48922.2021.01134"},{"key":"8873_CR12","doi-asserted-by":"crossref","unstructured":"Hossen M, Govindaiah A, Sultana S, Bhuiyan A, \u201cBengali sign language recognition using deep convolutional neural network.\u201dIn: (2018) joint 7th international conference on informatics, electronics & vision (iciev) and 2018 2nd international conference on imaging, vision & pattern recognition (icIVPR). IEEE 2018:369\u2013373","DOI":"10.1109\/ICIEV.2018.8640962"},{"key":"8873_CR13","doi-asserted-by":"crossref","unstructured":"Rahman M.\u00a0M, Islam M.\u00a0S, Rahman M.\u00a0H, Sassi R, Rivolta M.\u00a0W, Aktaruzzaman M (2019) \u201cA new benchmark on american sign language recognition using convolutional neural network.\u201d In: 2019 international conference on sustainable technologies for industry 4.0 (STI). IEEE, pp. 1\u20136","DOI":"10.1109\/STI47673.2019.9067974"},{"key":"8873_CR14","doi-asserted-by":"crossref","unstructured":"Ji Y, Kim S, Lee K.-B (2017) \u201cSign language learning system with image sampling and convolutional neural network.\u201d In: 2017 first IEEE international conference on robotic computing (IRC). IEEE, pp. 371\u2013375","DOI":"10.1109\/IRC.2017.40"},{"key":"8873_CR15","doi-asserted-by":"crossref","unstructured":"Kopuklu O, Kose N, Rigoll G (2018) \u201cMotion fused frames: Data level fusion strategy for hand gesture recognition.\u201d In: proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 2103\u20132111","DOI":"10.1109\/CVPRW.2018.00284"},{"issue":"9","key":"8873_CR16","doi-asserted-by":"publisher","first-page":"2822","DOI":"10.1109\/TCSVT.2018.2870740","volume":"29","author":"J Huang","year":"2018","unstructured":"Huang J, Zhou W, Li H, Li W (2018) Attention-based 3d-cnns for large-vocabulary sign language recognition. IEEE Trans Circuits Syst Video Technol 29(9):2822\u20132832","journal-title":"IEEE Trans Circuits Syst Video Technol"},{"issue":"11","key":"8873_CR17","doi-asserted-by":"publisher","first-page":"1724","DOI":"10.1093\/comjnl\/bxy049","volume":"61","author":"Z-J Liang","year":"2018","unstructured":"Liang Z-J, Liao S-B, Hu B-Z (2018) 3d convolutional neural networks for dynamic sign language recognition. Comput J 61(11):1724\u20131736","journal-title":"Comput J"},{"key":"8873_CR18","doi-asserted-by":"crossref","unstructured":"Ye Y, Tian Y, Huenerfauth M, Liu J (2018) \u201cRecognizing american sign language gestures from within continuous videos.\u201d In: proceedings of the ieee conference on computer vision and pattern recognition workshops, pp. 2064\u20132073","DOI":"10.1109\/CVPRW.2018.00280"},{"key":"8873_CR19","doi-asserted-by":"crossref","unstructured":"Miao Q, Li Y, Ouyang W, Ma Z, Xu X, Shi W, Cao X (2017) \u201cMultimodal gesture recognition based on the resc3d network.\u201d In: proceedings of the IEEE international conference on computer vision workshops, pp. 3047\u20133055","DOI":"10.1109\/ICCVW.2017.360"},{"key":"8873_CR20","doi-asserted-by":"crossref","unstructured":"Sripairojthikoon N, Harnsomburana J (2019) \u201cThai sign language recognition using 3d convolutional neural networks.\u201d In: proceedings of the 2019 7th international conference on computer and communications management, pp. 186\u2013189","DOI":"10.1145\/3348445.3348452"},{"issue":"3","key":"8873_CR21","doi-asserted-by":"publisher","first-page":"2413","DOI":"10.1007\/s00521-021-06467-9","volume":"34","author":"F Wang","year":"2022","unstructured":"Wang F, Du Y, Wang G, Zeng Z, Zhao L (2022) (2+1)d-slr: an efficient network for video sign language recognition. Neural Comput Appl 34(3):2413\u20132423","journal-title":"Neural Comput Appl"},{"key":"8873_CR22","unstructured":"Zhou M, Ng M, Cai Z, Cheung KC (2020) \u201cSelf-attention-based fully-inception networks for continuous sign language recognition.\u201d In: ECAI. IOS Press 2020: 2832\u20132839"},{"key":"8873_CR23","doi-asserted-by":"crossref","unstructured":"Molchanov P, Gupta S, Kim K, Kautz J (2015) \u201cHand gesture recognition with 3d convolutional neural networks.\u201d In: proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 1\u20137","DOI":"10.1109\/CVPRW.2015.7301342"},{"key":"8873_CR24","doi-asserted-by":"crossref","unstructured":"Devineau G, Moutarde F, Xi W, Yang J (2018) \u201cDeep learning for hand gesture recognition on skeletal data.\u201d In: 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018). IEEE, pp. 106\u2013113","DOI":"10.1109\/FG.2018.00025"},{"key":"8873_CR25","doi-asserted-by":"crossref","unstructured":"Konstantinidis D, Dimitropoulos K, Daras P (2018) \u201cSign language recognition based on hand and body skeletal data.\u201d In: 2018-3DTV-conference: the true vision-capture, transmission and display of 3D video (3DTV-CON). IEEE, pp. 1\u20134","DOI":"10.1109\/3DTV.2018.8478467"},{"key":"8873_CR26","doi-asserted-by":"crossref","unstructured":"Kim J-S, Jang W, Bien Z (1996) \u201cA dynamic gesture recognition system for the korean sign language (ksl).\u201d IEEE Trans Syst Man, Cybernetics. Part B (Cybernetics) 26(2): 354\u2013359","DOI":"10.1109\/3477.485888"},{"key":"8873_CR27","doi-asserted-by":"crossref","unstructured":"Holden E.-J, Owens R (2021) \u201cVisual sign language recognition.\u201d In: Multi-image analysis. Springer, pp. 270\u2013287","DOI":"10.1007\/3-540-45134-X_20"},{"key":"8873_CR28","doi-asserted-by":"crossref","unstructured":"Efthimiou E, Fotinea S.-E (2007) \u201cGslc: creation and annotation of a greek sign language corpus for hci.\u201d In: International conference on universal access in human-computer interaction. Springer, pp. 657\u2013666","DOI":"10.1007\/978-3-540-73279-2_73"},{"key":"8873_CR29","doi-asserted-by":"crossref","unstructured":"Pugeault N, Bowden R, \u201cSpelling it out: Real-time asl fingerspelling recognition.\u201d In: (2011) IEEE international conference on computer vision workshops (ICCV workshops). IEEE 2011: 1114\u20131119","DOI":"10.1109\/ICCVW.2011.6130290"},{"key":"8873_CR30","unstructured":"Ong E.-J, Cooper H, Pugeault N, Bowden R (2012) \u201cSign language recognition using sequential pattern trees.\u201d In: 2012 IEEE conference on computer vision and pattern recognition. IEEE,pp. 2200\u20132207"},{"key":"8873_CR31","unstructured":"Neidle C, Thangali A, Sclaroff S (2012) \u201cChallenges in development of the american sign language lexicon video dataset (asllvd) corpus.\u201d In: 5th workshop on the representation and processing of sign languages: interactions between corpus and Lexicon. LREC, Citeseer"},{"key":"8873_CR32","doi-asserted-by":"crossref","unstructured":"Oszust M, Wysocki M (2013) \u201cPolish sign language words recognition with kinect.\u201d In: 2013 6th international conference on human system interactions (HSI). IEEE, pp. 219\u2013226","DOI":"10.1109\/HSI.2013.6577826"},{"key":"8873_CR33","unstructured":"Chai X, Wang H, Chen X (2014) \u201cThe devisign large vocabulary of chinese sign language database and baseline evaluations.\u201d In: Technical report VIPL-TR-14-SLR-001. Key lab of intelligent information processing of chinese academy of sciences (CAS). Institute of computing technology"},{"key":"8873_CR34","unstructured":"Ronchetti F, Quiroga F, Estrebou C.\u00a0A, Lanzarini L.\u00a0C, Rosete A (2016) \u201cLsa64: an argentinian sign language dataset.\u201d In: XXII Congreso Argentino de Ciencias de la Computaci\u00f3n (CACIC 2016)"},{"key":"8873_CR35","doi-asserted-by":"crossref","unstructured":"Hu H, Zhou W, Pu J, Li H (2021) \u201cGlobal-local enhancement network for nmf-aware sign language recognition.\u201d In: ACM transactions on multimedia computing, communications, and applications (TOMM), vol\u00a017, no\u00a03, pp. 1\u201319","DOI":"10.1145\/3436754"},{"key":"8873_CR36","doi-asserted-by":"crossref","unstructured":"Bo L, Lai K, Ren X, Fox D (2011) \u201cObject recognition with hierarchical kernel descriptors.\u201d In CVPR. IEEE 2011: 1729\u20131736","DOI":"10.1109\/CVPR.2011.5995719"},{"key":"8873_CR37","doi-asserted-by":"crossref","unstructured":"Tharwat A, Gaber T, Hassanien A.\u00a0E, Shahin M.\u00a0K, Refaat B (2015) \u201cSift-based arabic sign language recognition system.\u201d In: Afro-European conference for industrial advancement. Springer, pp. 359\u2013370","DOI":"10.1007\/978-3-319-13572-4_30"},{"issue":"11","key":"8873_CR38","doi-asserted-by":"publisher","first-page":"3592","DOI":"10.1109\/TIM.2011.2161140","volume":"60","author":"NH Dardas","year":"2011","unstructured":"Dardas NH, Georganas ND (2011) Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques. IEEE Trans Instrum Meas 60(11):3592\u20133607","journal-title":"IEEE Trans Instrum Meas"},{"issue":"12","key":"8873_CR39","doi-asserted-by":"publisher","first-page":"7957","DOI":"10.1007\/s00521-019-04691-y","volume":"32","author":"A Wadhawan","year":"2020","unstructured":"Wadhawan A, Kumar P (2020) Deep learning-based sign language recognition system for static signs. Neural Comput Appl 32(12):7957\u20137968","journal-title":"Neural Comput Appl"},{"issue":"1","key":"8873_CR40","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1007\/s00521-012-0818-4","volume":"22","author":"A Samir Elons","year":"2013","unstructured":"Samir Elons A, Abull-ela M, Tolba MF (2013) Neutralizing lighting non-homogeneity and background size in pcnn image signature for arabic sign language recognition. Neural Comput Appl 22(1):47\u201353","journal-title":"Neural Comput Appl"},{"issue":"12","key":"8873_CR41","doi-asserted-by":"publisher","first-page":"8955","DOI":"10.1007\/s00521-019-04427-y","volume":"31","author":"T Ozcan","year":"2019","unstructured":"Ozcan T, Basturk A (2019) Transfer learning-based convolutional neural networks with heuristic optimization for hand gesture recognition. Neural Comput Appl 31(12):8955\u20138970","journal-title":"Neural Comput Appl"},{"key":"8873_CR42","unstructured":"Li Y, Miao Q, Tian K, Fan Y, Xu X, Li R, Song J, \u201cLarge-scale gesture recognition with a fusion of rgb-d data based on the c3d model.\u201d In: (2016) 23rd international conference on pattern recognition (ICPR). IEEE 2016: 25\u201330"},{"issue":"4","key":"8873_CR43","first-page":"1659","volume":"26","author":"MC Ariesta","year":"2018","unstructured":"Ariesta M.\u00a0C, Wiryana F, Kusuma G.\u00a0P et\u00a0al. (2018) \u201cA survey of hand gesture recognition methods in sign language recognition.\u201d Pertanika J Sci Technol 26(4):1659\u20131675","journal-title":"Pertanika J Sci Technol"},{"issue":"1","key":"8873_CR44","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1007\/s13042-017-0705-5","volume":"10","author":"MJ Cheok","year":"2019","unstructured":"Cheok MJ, Omar Z, Jaward MH (2019) A review of hand gesture and sign language recognition techniques. Int J Mach Learn Cybern 10(1):131\u2013153","journal-title":"Int J Mach Learn Cybern"},{"key":"8873_CR45","doi-asserted-by":"crossref","unstructured":"Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) \u201cLearning spatiotemporal features with 3d convolutional networks.\u201d In: proceedings of the IEEE international conference on computer vision, pp. 4489\u20134497","DOI":"10.1109\/ICCV.2015.510"},{"key":"8873_CR46","doi-asserted-by":"crossref","unstructured":"Feichtenhofer C, Fan H, Malik J, He K (2019) \u201cSlowfast networks for video recognition.\u201d In: proceedings of the IEEE\/CVF international conference on computer vision, pp. 6202\u20136211","DOI":"10.1109\/ICCV.2019.00630"},{"key":"8873_CR47","doi-asserted-by":"crossref","unstructured":"Tran D, Wang H, Torresani L, Ray J, LeCun Y, Paluri M (2018) \u201cA closer look at spatiotemporal convolutions for action recognition.\u201d In: proceedings of the IEEE conference on computer vision and pattern recognition pp. 6450\u20136459","DOI":"10.1109\/CVPR.2018.00675"},{"key":"8873_CR48","doi-asserted-by":"crossref","unstructured":"Yang C, Xu Y, Shi J, Dai B, Zhou B (2020) \u201cTemporal pyramid network for action recognition.\u201d In: proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 591\u2013600","DOI":"10.1109\/CVPR42600.2020.00067"},{"key":"8873_CR49","doi-asserted-by":"crossref","unstructured":"Feichtenhofer C (2020) \u201cX3d: Expanding architectures for efficient video recognition.\u201d In: proceedings of the IEEE\/CVF conference on computer vision and pattern recognition pp. 203\u2013213","DOI":"10.1109\/CVPR42600.2020.00028"},{"key":"8873_CR50","doi-asserted-by":"crossref","unstructured":"Zhou Y, Sun X, Luo C, Zha Z.-J, Zeng W (2020) \u201cSpatiotemporal fusion in 3d cnns: A probabilistic view.\u201d In: proceedings of the IEEE\/CVF conference on computer vision and pattern recognition pp. 9829\u20139838","DOI":"10.1109\/CVPR42600.2020.00985"},{"key":"8873_CR51","doi-asserted-by":"crossref","unstructured":"Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, Van\u00a0Gool L (2016) \u201cTemporal segment networks: Towards good practices for deep action recognition.\u201d In: European conference on computer vision Springer, pp. 20\u201336","DOI":"10.1007\/978-3-319-46484-8_2"},{"key":"8873_CR52","doi-asserted-by":"crossref","unstructured":"Lin J, Gan C, Han S (2018) \u201cTemporal shift module for efficient video understanding.\u201d CoRR, vol. abs\/1811.08383. [Online]. Available: arXiv:1811.08383","DOI":"10.1109\/ICCV.2019.00718"},{"key":"8873_CR53","doi-asserted-by":"crossref","unstructured":"Goyal R, Ebrahimi\u00a0Kahou S, Michalski V, Materzynska J, Westphal S, Kim H, Haenel V, Fruend I, Yianilos P, Mueller-Freitag M (2017)et\u00a0al., \u201cThe\u201d something something\u201d video database for learning and evaluating visual common sense.\u201d In: proceedings of the IEEE international conference on computer vision pp. 5842\u20135850","DOI":"10.1109\/ICCV.2017.622"},{"key":"8873_CR54","doi-asserted-by":"crossref","unstructured":"Wang X,Girshick R, Gupta A, He K (2018) \u201cNon-local neural networks.\u201d In: proceedings of the IEEE conference on computer vision and pattern recognition pp. 7794\u20137803","DOI":"10.1109\/CVPR.2018.00813"},{"key":"8873_CR55","doi-asserted-by":"crossref","unstructured":"Carreira J, Zisserman A (2017) \u201cQuo vadis, action recognition? a new model and the kinetics dataset.\u201d In: proceedings of the IEEE conference on computer vision and pattern recognition pp. 6299\u20136308","DOI":"10.1109\/CVPR.2017.502"},{"key":"8873_CR56","unstructured":"Ioffe S, Szegedy C (2015) \u201cBatch normalization: Accelerating deep network training by reducing internal covariate shift.\u201d In: international conference on machine learning. PMLR, pp. 448\u2013456"},{"key":"8873_CR57","doi-asserted-by":"crossref","unstructured":"Wang X, Gupta A (2018) \u201cVideos as space-time region graphs.\u201d In: proceedings of the European conference on computer vision (ECCV), pp. 399\u2013417","DOI":"10.1007\/978-3-030-01228-1_25"},{"key":"8873_CR58","doi-asserted-by":"crossref","unstructured":"Zolfaghari M, Singh K, Brox T (2018) \u201cEco: Efficient convolutional network for online video understanding.\u201d In: proceedings of the European conference on computer vision (ECCV), pp. 695\u2013712","DOI":"10.1007\/978-3-030-01216-8_43"},{"key":"8873_CR59","doi-asserted-by":"crossref","unstructured":"Wang Y, Chen Z, Jiang H, Song S, Han Y, Huang G (2021) \u201cAdaptive focus for efficient video recognition.\u201d In proceedings of the IEEE\/CVF international conference on computer vision, pp. 16\u00a0249\u201316\u00a0258","DOI":"10.1109\/ICCV48922.2021.01594"},{"key":"8873_CR60","doi-asserted-by":"crossref","unstructured":"Qian S, Sun K, Wu W, Qian C, Jia J (2019) \u201cAggregation via separation: Boosting facial landmark detector with semi-supervised style translation.\u201d In: proceedings of the IEEE\/CVF international conference on computer vision, pp. 10\u00a0153\u201310\u00a0163","DOI":"10.1109\/ICCV.2019.01025"},{"key":"8873_CR61","doi-asserted-by":"crossref","unstructured":"Wang Y, Yue Y, Lin Y, Jiang H, Lai Z, Kulikov V, Orlov N, Shi H, Huang G (2022) \u201cAdafocus v2: End-to-end training of spatial dynamic networks for video recognition.\u201d In: 2022 IEEE\/CVF conference on computer vision and pattern recognition (CVPR). IEEE, pp. 20\u00a0030\u201320\u00a0040","DOI":"10.1109\/CVPR52688.2022.01943"},{"issue":"2","key":"8873_CR62","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2735952","volume":"6","author":"A Tang","year":"2015","unstructured":"Tang A, Lu K, Wang Y, Huang J, Li H (2015) A real-time hand posture recognition system using deep neural networks. ACM Trans Intell Syst Technol (TIST) 6(2):1\u201323","journal-title":"ACM Trans Intell Syst Technol (TIST)"},{"key":"8873_CR63","doi-asserted-by":"crossref","unstructured":"Selvaraj P, Nc G, Kumar P, Khapra M (2021) \u201cOpenhands: Making sign language recognition accessible with pose-based pretrained models across languages.\u201d arXiv preprint arXiv:2110.05877","DOI":"10.18653\/v1\/2022.acl-long.150"},{"key":"8873_CR64","doi-asserted-by":"crossref","unstructured":"Boh\u00e1\u010dek M, Hr\u00faz M (2022) \u201cSign pose-based transformer for word-level sign language recognition.\u201d In: proceedings of the IEEE\/CVF winter conference on applications of computer vision, pp. 182\u2013191","DOI":"10.1109\/WACVW54805.2022.00024"},{"key":"8873_CR65","doi-asserted-by":"crossref","unstructured":"Zhou B, Andonian A, Oliva A, Torralba A (2018) \u201cTemporal relational reasoning in videos.\u201d In: proceedings of the European conference on computer vision (ECCV), pp. 803\u2013818","DOI":"10.1007\/978-3-030-01246-5_49"}],"container-title":["Neural Computing and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-023-08873-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00521-023-08873-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-023-08873-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T20:19:28Z","timestamp":1729887568000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00521-023-08873-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,7]]},"references-count":65,"journal-issue":{"issue":"30","published-print":{"date-parts":[[2023,10]]}},"alternative-id":["8873"],"URL":"https:\/\/doi.org\/10.1007\/s00521-023-08873-7","relation":{},"ISSN":["0941-0643","1433-3058"],"issn-type":[{"type":"print","value":"0941-0643"},{"type":"electronic","value":"1433-3058"}],"subject":[],"published":{"date-parts":[[2023,8,7]]},"assertion":[{"value":"16 January 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 July 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 August 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interest"}}]}}