{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,8,15]],"date-time":"2023-08-15T08:40:05Z","timestamp":1692088805042},"reference-count":30,"publisher":"Springer Science and Business Media LLC","issue":"26","license":[{"start":{"date-parts":[[2023,6,16]],"date-time":"2023-06-16T00:00:00Z","timestamp":1686873600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,6,16]],"date-time":"2023-06-16T00:00:00Z","timestamp":1686873600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Comput & Applic"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1007\/s00521-023-08721-8","type":"journal-article","created":{"date-parts":[[2023,6,16]],"date-time":"2023-06-16T14:02:16Z","timestamp":1686924136000},"page":"19015-19024","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["One-class classifier based on principal curves"],"prefix":"10.1007","volume":"35","author":[{"given":"Fernando Elias","family":"de Melo Borges","sequence":"first","affiliation":[]},{"given":"Otavio Fidelis","family":"Mota","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4504-7721","authenticated-orcid":false,"given":"Danton Diego","family":"Ferreira","sequence":"additional","affiliation":[]},{"given":"Bruno Henrique Groenner","family":"Barbosa","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,16]]},"reference":[{"key":"8721_CR1","doi-asserted-by":"publisher","first-page":"12973","DOI":"10.1007\/s00521-021-05905-y","volume":"33","author":"PK Mishra","year":"2021","unstructured":"Mishra PK, Gautam C, Aruna T (2021) Minimum variance embedded auto-associative kernel extreme learning machine for one-class classification. Neural Comput Appl 33:12973\u201312987","journal-title":"Neural Comput Appl"},{"key":"8721_CR2","doi-asserted-by":"crossref","unstructured":"Irigoien I, Sierra B, Arenas C (2014) Towards application of one-class classification methods to medical data. Sci World J 730712","DOI":"10.1155\/2014\/730712"},{"key":"8721_CR3","doi-asserted-by":"publisher","first-page":"3725","DOI":"10.1007\/s10462-020-09939-x","volume":"54","author":"\u00d6mer G\u00f6z\u00fca\u00e7\u0131k","year":"2021","unstructured":"G\u00f6z\u00fca\u00e7\u0131k \u00d6mer, Can F (2021) Concept learning using one-class classifiers for implicit drift detection in evolving data streams. Artif Intell Rev 54:3725\u20133747","journal-title":"Artif Intell Rev"},{"key":"8721_CR4","doi-asserted-by":"publisher","DOI":"10.1016\/j.cam.2023.115132","volume":"427","author":"A Dzhoha","year":"2023","unstructured":"Dzhoha A, Rozora I (2023) Multi-armed bandit problem with online clustering as side information. J Comput Appl Math 427:115132. https:\/\/doi.org\/10.1016\/j.cam.2023.115132","journal-title":"J Comput Appl Math"},{"key":"8721_CR5","first-page":"2533","volume":"15","author":"A Slivkins","year":"2014","unstructured":"Slivkins A (2014) Contextual bandits with similarity information. J Mach Learn Res 15:2533\u20132568","journal-title":"J Mach Learn Res"},{"key":"8721_CR6","doi-asserted-by":"crossref","unstructured":"Liu FT, Ting KM, Zhou Z-H (2008) Isolation forest. In: 2008 Eighth IEEE international conference on data mining. IEEE, pp 413\u2013422","DOI":"10.1109\/ICDM.2008.17"},{"issue":"7","key":"8721_CR7","doi-asserted-by":"publisher","first-page":"1443","DOI":"10.1162\/089976601750264965","volume":"13","author":"B Sch\u00f6lkopf","year":"2001","unstructured":"Sch\u00f6lkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13(7):1443\u20131471","journal-title":"Neural Comput"},{"key":"8721_CR8","unstructured":"Deng F, Chen Y, Dou J, Liu C, Chen Z, Blaabjerg F (2022) Isolation forest based submodule open-circuit fault localization method for modular multilevel converters. IEEE Trans Ind Electron 1\u201312"},{"key":"8721_CR9","doi-asserted-by":"crossref","unstructured":"Zhang K, Kang X, Li S (2019) Isolation forest for anomaly detection in hyperspectral images. In: IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium. IEEE, pp 437\u2013440","DOI":"10.1109\/IGARSS.2019.8899812"},{"key":"8721_CR10","doi-asserted-by":"publisher","first-page":"287","DOI":"10.1016\/j.measurement.2019.01.020","volume":"137","author":"J Saari","year":"2019","unstructured":"Saari J, Str\u00f6mbergsson D, Lundberg J, Thomson A (2019) Detection and identification of windmill bearing faults using a one-class support vector machine (svm). Measurement 137:287\u2013301","journal-title":"Measurement"},{"key":"8721_CR11","doi-asserted-by":"publisher","first-page":"101946","DOI":"10.1016\/j.adhoc.2019.101946","volume":"94","author":"J Parras","year":"2019","unstructured":"Parras J, Zazo S (2019) Using one class svm to counter intelligent attacks against an sprt defense mechanism. Ad Hoc Netw 94:101946\u2013101954","journal-title":"Ad Hoc Netw"},{"issue":"6","key":"8721_CR12","doi-asserted-by":"publisher","first-page":"1093","DOI":"10.1109\/TLA.2020.9099687","volume":"18","author":"FEM Borges","year":"2020","unstructured":"Borges FEM, Pinto AWM, Ribeiro DA, Barbosa TS, Pereira DA, Barbosa BHG, Magalh\u00e3es RR, Ferreira DD (2020) An unsupervised method based on support vector machines and higher-order statistics for mechanical faults detection. IEEE Latin Am Trans 18(6):1093\u20131101","journal-title":"IEEE Latin Am Trans"},{"key":"8721_CR13","doi-asserted-by":"publisher","first-page":"105754","DOI":"10.1016\/j.knosys.2020.105754","volume":"196","author":"S Alam","year":"2020","unstructured":"Alam S, Sonbhadra SK, Agarwal S, Nagabhushan P (2020) One-class support vector classifiers: a survey. Knowl Based Syst 196:105754\u2013105772","journal-title":"Knowl Based Syst"},{"key":"8721_CR14","doi-asserted-by":"crossref","unstructured":"Breunig MM, Kriegel H-P, Ng RT, Sander J (2000) Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp 93\u2013104","DOI":"10.1145\/342009.335388"},{"issue":"8","key":"8721_CR15","doi-asserted-by":"publisher","first-page":"2129","DOI":"10.1007\/s10115-021-01585-1","volume":"63","author":"A Li","year":"2021","unstructured":"Li A, Xu W, Liu Z, Shi Y (2021) Improved incremental local outlier detection for data streams based on the landmark window model. Knowl Inf Syst 63(8):2129\u20132155","journal-title":"Knowl Inf Syst"},{"key":"8721_CR16","doi-asserted-by":"publisher","DOI":"10.1016\/j.est.2022.105470","volume":"55","author":"Y Qiu","year":"2022","unstructured":"Qiu Y, Dong T, Lin D, Zhao B, Cao W, Jiang F (2022) Fault diagnosis for lithium-ion battery energy storage systems based on local outlier factor. J Energy Storage 55:105470","journal-title":"J Energy Storage"},{"issue":"406","key":"8721_CR17","doi-asserted-by":"publisher","first-page":"502","DOI":"10.1080\/01621459.1989.10478797","volume":"84","author":"T Hastie","year":"1989","unstructured":"Hastie T, Stuetzle W (1989) Principal curves. J Am Stat Assoc 84(406):502\u2013516","journal-title":"J Am Stat Assoc"},{"key":"8721_CR18","unstructured":"Chang K-y, Ghosh J (1998) Principal curve classifier-a nonlinear approach to pattern classification. In: 1998 IEEE international joint conference on neural networks proceedings. IEEE world congress on computational intelligence (Cat. No. 98CH36227), vol 1. IEEE, pp 695\u2013700"},{"key":"8721_CR19","doi-asserted-by":"crossref","unstructured":"Chang K-Y, Ghosh J (1998) Principal curves for nonlinear feature extraction and classification. In: Applications of artificial neural networks in image processing III, vol 3307. SPIE, pp 120\u2013129","DOI":"10.1117\/12.304651"},{"key":"8721_CR20","doi-asserted-by":"publisher","first-page":"8","DOI":"10.1016\/j.epsr.2015.03.019","volume":"125","author":"DD Ferreira","year":"2015","unstructured":"Ferreira DD, de Seixas JM, Cerqueira AS, Duque CA, Bollen MHJ, Ribeiro PF (2015) A new power quality deviation index based on principal curves. Electr Power Syst Res 125:8\u201314","journal-title":"Electr Power Syst Res"},{"issue":"4","key":"8721_CR21","doi-asserted-by":"publisher","first-page":"4957","DOI":"10.1109\/JSEN.2020.3031737","volume":"21","author":"LPO Sousa","year":"2021","unstructured":"Sousa LPO, Fukushima KL, Scagion VP, Facure MHM, Correa DS, Oliveira JE, Ferreira DD (2021) A principal curves-based method for electronic tongue data analysis. IEEE Sens J 21(4):4957\u20134965. https:\/\/doi.org\/10.1109\/JSEN.2020.3031737","journal-title":"IEEE Sens J"},{"issue":"1","key":"8721_CR22","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1007\/s11634-019-00363-w","volume":"14","author":"ECC Moraes","year":"2020","unstructured":"Moraes ECC, Ferreira DD, Vitor GB, Barbosa BHG (2020) Data clustering based on principal curves. Adv Data Anal Classif 14(1):77\u201396","journal-title":"Adv Data Anal Classif"},{"issue":"8","key":"8721_CR23","doi-asserted-by":"publisher","first-page":"1009","DOI":"10.1016\/S0167-8655(02)00032-6","volume":"23","author":"JJ Verbeek","year":"2002","unstructured":"Verbeek JJ, Vlassis N, Kr\u00f6se B (2002) A k-segments algorithm for finding principal curves. Pattern Recognit Lett 23(8):1009\u20131017","journal-title":"Pattern Recognit Lett"},{"key":"8721_CR24","doi-asserted-by":"publisher","first-page":"891","DOI":"10.1007\/s10618-015-0444-8","volume":"30","author":"GO Campos","year":"2016","unstructured":"Campos GO, Zimek A, Sander J, Campello RJ, Micenkov\u00e1 B, Schubert E, Assent I, Houle ME (2016) On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min Knowl Discov. 30:891\u2013927","journal-title":"Data Min Knowl Discov."},{"key":"8721_CR25","unstructured":"Quinlan JR, Compton PJ, Horn K, Lazarus L (1987) Inductive knowledge acquisition: a case study. In: Proceedings of the Second Australian conference on applications of expert systems, pp 137\u2013156"},{"issue":"23","key":"8721_CR26","doi-asserted-by":"publisher","first-page":"9193","DOI":"10.1073\/pnas.87.23.9193","volume":"87","author":"WH Wolberg","year":"1990","unstructured":"Wolberg WH, Mangasarian OL (1990) Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc Natl Acad Sci 87(23):9193\u20139196","journal-title":"Proc Natl Acad Sci"},{"key":"8721_CR27","doi-asserted-by":"crossref","unstructured":"Woods KS, Solka JL, Priebe CE, W Philip Kegelmeyer J, Doss CC, Bowyer KW (1994) Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography, pp 213\u2013231","DOI":"10.1142\/9789812797834_0011"},{"key":"8721_CR28","doi-asserted-by":"crossref","unstructured":"Bandaragoda TR, Ting KM, Albrecht D, Liu FT, Wells JR (2014) Efficient anomaly detection by isolation using nearest neighbour ensemble. In: 2014 IEEE international conference on data mining workshop. IEEE, pp 698\u2013705","DOI":"10.1109\/ICDMW.2014.70"},{"key":"8721_CR29","doi-asserted-by":"publisher","first-page":"24431","DOI":"10.1109\/ACCESS.2023.3252004","volume":"11","author":"RRZ Koko","year":"2023","unstructured":"Koko RRZ, Yassine IA, Wahed MA, Madete JK, Rushdi MA (2023) Dynamic construction of outlier detector ensembles with bisecting k-means clustering. IEEE Access 11:24431\u201324447","journal-title":"IEEE Access"},{"key":"8721_CR30","unstructured":"Rayana S (2016) ODDS Library. http:\/\/odds.cs.stonybrook.edu"}],"container-title":["Neural Computing and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-023-08721-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00521-023-08721-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-023-08721-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,14]],"date-time":"2023-08-14T15:19:22Z","timestamp":1692026362000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00521-023-08721-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6,16]]},"references-count":30,"journal-issue":{"issue":"26","published-print":{"date-parts":[[2023,9]]}},"alternative-id":["8721"],"URL":"https:\/\/doi.org\/10.1007\/s00521-023-08721-8","relation":{},"ISSN":["0941-0643","1433-3058"],"issn-type":[{"value":"0941-0643","type":"print"},{"value":"1433-3058","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,6,16]]},"assertion":[{"value":"3 January 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"31 May 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 June 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}