{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T17:35:31Z","timestamp":1723570531348},"reference-count":45,"publisher":"Springer Science and Business Media LLC","issue":"23","license":[{"start":{"date-parts":[[2022,7,27]],"date-time":"2022-07-27T00:00:00Z","timestamp":1658880000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,7,27]],"date-time":"2022-07-27T00:00:00Z","timestamp":1658880000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Comput & Applic"],"published-print":{"date-parts":[[2022,12]]},"DOI":"10.1007\/s00521-022-07551-4","type":"journal-article","created":{"date-parts":[[2022,7,27]],"date-time":"2022-07-27T22:17:03Z","timestamp":1658960223000},"page":"20773-20790","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["A Vision-based inventory method for stacked goods in stereoscopic warehouse"],"prefix":"10.1007","volume":"34","author":[{"given":"Haonan","family":"Yin","sequence":"first","affiliation":[]},{"given":"Chuanjun","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Chaofan","family":"Hao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5600-7055","authenticated-orcid":false,"given":"Biqing","family":"Huang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,27]]},"reference":[{"issue":"1","key":"7551_CR1","doi-asserted-by":"publisher","first-page":"409","DOI":"10.1016\/j.ijpe.2013.05.006","volume":"145","author":"M Lim","year":"2013","unstructured":"Lim M, Bahr W, Leung S (2013) Rfid in the warehouse: a literature analysis (1995\u20132010) of its applications, benefits, challenges and future trends. Int J Prod Econ 145(1):409\u2013430","journal-title":"Int J Prod Econ"},{"issue":"10","key":"7551_CR2","doi-asserted-by":"publisher","first-page":"2394","DOI":"10.3390\/s19102394","volume":"19","author":"T Fernandez-Carames","year":"2019","unstructured":"Fernandez-Carames T, Blanco-Novoa O, Froiz-Miguez I, Fraga-Lamas P (2019) Towards an autonomous industry 4.0 warehouse: A uav and blockchain-based system for inventory and traceability applications in big data-driven supply chain management. Sens (Basel, Switzerland) 19(10):2394","journal-title":"Sens (Basel, Switzerland)"},{"issue":"1","key":"7551_CR3","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1002\/rob.21757","volume":"35","author":"F Perez-Grau","year":"2018","unstructured":"Perez-Grau F, Ragel R, Caballero F, Viguria A, Ollero A (2018) An architecture for robust uav navigation in gps-denied areas. J Field Robot 35(1):121\u2013145","journal-title":"J Field Robot"},{"issue":"03","key":"7551_CR4","first-page":"117","volume":"22","author":"Y Xiaozhen","year":"2017","unstructured":"Xiaozhen Y, Changzhun L, Zunpin G, Shuqin H, Ziwei W, Hua T (2017) Exploration and application of intelligent inventory in automatic stereo library. Wuliu jishu yuyingyong 22(03):117\u2013118","journal-title":"Wuliu jishu yuyingyong"},{"key":"7551_CR5","doi-asserted-by":"crossref","unstructured":"Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp 10012\u201310022","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"7551_CR6","doi-asserted-by":"crossref","unstructured":"Girshick R, Donahue J, Darrell T (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Paper presented at IEEE conference on computer vision and pattern recognition (CVPR), 2014","DOI":"10.1109\/CVPR.2014.81"},{"key":"7551_CR7","doi-asserted-by":"crossref","unstructured":"Girshick R (2015) Fast r-cnn. In: Paper presented at IEEE international conference on computer vision (ICCV), 2015","DOI":"10.1109\/ICCV.2015.169"},{"issue":"6","key":"7551_CR8","doi-asserted-by":"publisher","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","volume":"39","author":"S Ren","year":"2016","unstructured":"Ren S, He K, Girshick R (2016) Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137\u20131149","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"7551_CR9","doi-asserted-by":"crossref","unstructured":"Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD: Single shot multibox detector. In: Paper presented at European conference on computer vision (ECCV)","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"7551_CR10","doi-asserted-by":"crossref","unstructured":"Lin TY, Goyal P, Girshick R (2017) Focal loss for dense object detection. In: Paper presented at IEEE international conference on computer vision (ICCV)","DOI":"10.1109\/ICCV.2017.324"},{"key":"7551_CR11","doi-asserted-by":"crossref","unstructured":"Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779\u2013788","DOI":"10.1109\/CVPR.2016.91"},{"key":"7551_CR12","doi-asserted-by":"crossref","unstructured":"Chattopadhyay P, Vedantam R, Selvaraju RR, Batra D, Parikh D (2017) Counting everyday objects in everyday scenes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1135\u20131144","DOI":"10.1109\/CVPR.2017.471"},{"key":"7551_CR13","doi-asserted-by":"crossref","unstructured":"Zhang Y, Zhou D, Chen S, Gao S, Ma Y (2016) Single-image crowd counting via multi-column convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 589\u2013597 (2016)","DOI":"10.1109\/CVPR.2016.70"},{"key":"7551_CR14","doi-asserted-by":"crossref","unstructured":"Sindagi VA, Patel VM (2017) Generating high-quality crowd density maps using contextual pyramid cnns. In: Proceedings of the IEEE international conference on computer vision, pp 1861\u20131870 (2017)","DOI":"10.1109\/ICCV.2017.206"},{"key":"7551_CR15","doi-asserted-by":"crossref","unstructured":"Chen X, Bin Y, Sang N, Gao C (2019) Scale pyramid network for crowd counting. In: 2019 IEEE winter conference on applications of computer vision (WACV), pp 1941\u20131950. IEEE","DOI":"10.1109\/WACV.2019.00211"},{"key":"7551_CR16","doi-asserted-by":"crossref","unstructured":"Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132\u20137141","DOI":"10.1109\/CVPR.2018.00745"},{"key":"7551_CR17","doi-asserted-by":"crossref","unstructured":"Woo S, Park J, Lee J-Y, Kweon IS (2018) Cbam: Convolutional block attention module. In: Proceedings of the european conference on computer vision (ECCV), pp 3\u201319","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"7551_CR18","doi-asserted-by":"crossref","unstructured":"Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7794\u20137803","DOI":"10.1109\/CVPR.2018.00813"},{"key":"7551_CR19","doi-asserted-by":"crossref","unstructured":"Huang Z, Wang X, Huang L, Huang C, Wei Y, Liu W (2019) Ccnet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp 603\u2013612","DOI":"10.1109\/ICCV.2019.00069"},{"key":"7551_CR20","doi-asserted-by":"crossref","unstructured":"Cao Y, Xu J, Lin S, Wei F, Hu H (2019) Gcnet: non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE\/CVF international conference on computer vision workshops","DOI":"10.1109\/ICCVW.2019.00246"},{"key":"7551_CR21","unstructured":"Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser \u0141, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998\u20136008"},{"key":"7551_CR22","unstructured":"Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, et al (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929"},{"key":"7551_CR23","doi-asserted-by":"crossref","unstructured":"Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object detection with transformers. In: European conference on computer vision, pp 213\u2013229. Springer, Berlin","DOI":"10.1007\/978-3-030-58452-8_13"},{"key":"7551_CR24","unstructured":"Zhu X, Su W, Lu L, Li B, Wang X, Dai J (2020) Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159"},{"issue":"23","key":"7551_CR25","doi-asserted-by":"publisher","first-page":"9053","DOI":"10.1049\/joe.2018.9180","volume":"2019","author":"T Li","year":"2019","unstructured":"Li T, Huang B, Li C, Huang M (2019) Application of convolution neural network object detection algorithm in logistics warehouse. J Eng 2019(23):9053\u20139058","journal-title":"J Eng"},{"key":"7551_CR26","doi-asserted-by":"crossref","unstructured":"Zaccaria M, Monica R, Aleotti J (2020) A comparison of deep learning models for pallet detection in industrial warehouses. In: 2020 IEEE 16th international conference on intelligent computer communication and processing (ICCP), pp 417\u2013422. IEEE","DOI":"10.1109\/ICCP51029.2020.9266168"},{"key":"7551_CR27","unstructured":"Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934"},{"issue":"2","key":"7551_CR28","doi-asserted-by":"publisher","first-page":"1179","DOI":"10.1109\/LRA.2016.2532924","volume":"1","author":"C Rennie","year":"2016","unstructured":"Rennie C, Shome R, Bekris KE, De Souza AF (2016) A dataset for improved rgbd-based object detection and pose estimation for warehouse pick-and-place. IEEE Robot Autom Lett 1(2):1179\u20131185","journal-title":"IEEE Robot Autom Lett"},{"key":"7551_CR29","doi-asserted-by":"crossref","unstructured":"Pang J, Chen K, Shi J, Feng H, Ouyang W, Lin D (2019) Libra r-cnn: towards balanced learning for object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 821\u2013830","DOI":"10.1109\/CVPR.2019.00091"},{"key":"7551_CR30","doi-asserted-by":"crossref","unstructured":"Cai Z, Vasconcelos N (2018) Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6154\u20136162","DOI":"10.1109\/CVPR.2018.00644"},{"key":"7551_CR31","unstructured":"Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv preprint arXiv:1607.06450"},{"key":"7551_CR32","unstructured":"Hendrycks D, Gimpel K (2016) Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415"},{"key":"7551_CR33","doi-asserted-by":"crossref","unstructured":"Lin T-Y, Doll\u00e1r P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117\u20132125","DOI":"10.1109\/CVPR.2017.106"},{"key":"7551_CR34","doi-asserted-by":"crossref","unstructured":"Gong Y, Yu X, Ding Y, Peng X, Zhao J, Han Z (2021) Effective fusion factor in fpn for tiny object detection. In: Proceedings of the IEEE\/CVF winter conference on applications of computer vision, pp 1160\u20131168","DOI":"10.1109\/WACV48630.2021.00120"},{"key":"7551_CR35","unstructured":"Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226\u2013231"},{"key":"7551_CR36","doi-asserted-by":"crossref","unstructured":"Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Doll\u00e1r P, Zitnick CL (2014) Microsoft coco: common objects in context. In: European conference on computer vision, pp 740\u2013755. Springer, Berlin","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"7551_CR37","unstructured":"Loshchilov I, Hutter F (2018) Fixing weight decay regularization in adam"},{"key":"7551_CR38","doi-asserted-by":"crossref","unstructured":"Redmon J, Farhadi A (2017) Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7263\u20137271","DOI":"10.1109\/CVPR.2017.690"},{"key":"7551_CR39","unstructured":"DeVries T, Taylor GW (2017) Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552"},{"key":"7551_CR40","unstructured":"Zhang H, Cisse M, Dauphin YN, Lopez-Paz D (2017) Mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412"},{"key":"7551_CR41","unstructured":"Chen K, Wang J, Pang J, Cao Y, Xiong Y, Li X, Sun S, Feng W, Liu Z, Xu J, Zhang Z, Cheng D, Zhu C, Cheng T, Zhao Q, Li B, Lu X, Zhu R, Wu Y, Dai J, Wang J, Shi J, Ouyang W, Loy CC, Lin D (2019) MMDetection: open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155"},{"key":"7551_CR42","doi-asserted-by":"crossref","unstructured":"Tian Z, Shen C, Chen H, He T (2019) Fcos: fully convolutional one-stage object detection. In: Proceedings of the IEEE\/CVF international conference on computer vision, pp 9627\u20139636","DOI":"10.1109\/ICCV.2019.00972"},{"key":"7551_CR43","unstructured":"Bochkovskiy, A, Wang C-Y, Liao H-YM (2020) Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934"},{"key":"7551_CR44","doi-asserted-by":"crossref","unstructured":"Zhang S, Chi C, Yao Y, Lei Z, Li SZ (2020) Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (CVPR)","DOI":"10.1109\/CVPR42600.2020.00978"},{"key":"7551_CR45","doi-asserted-by":"crossref","unstructured":"Tan M, Pang R, Le QV (2020) Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 10781\u201310790","DOI":"10.1109\/CVPR42600.2020.01079"}],"container-title":["Neural Computing and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-022-07551-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00521-022-07551-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-022-07551-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,7]],"date-time":"2022-11-07T23:33:52Z","timestamp":1667864032000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00521-022-07551-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,27]]},"references-count":45,"journal-issue":{"issue":"23","published-print":{"date-parts":[[2022,12]]}},"alternative-id":["7551"],"URL":"https:\/\/doi.org\/10.1007\/s00521-022-07551-4","relation":{},"ISSN":["0941-0643","1433-3058"],"issn-type":[{"value":"0941-0643","type":"print"},{"value":"1433-3058","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,7,27]]},"assertion":[{"value":"20 December 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 June 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 July 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}