{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:52:34Z","timestamp":1726408354244},"reference-count":55,"publisher":"Springer Science and Business Media LLC","issue":"16","license":[{"start":{"date-parts":[[2021,6,8]],"date-time":"2021-06-08T00:00:00Z","timestamp":1623110400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,6,8]],"date-time":"2021-06-08T00:00:00Z","timestamp":1623110400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"International Science and Technology Cooperation Project of Fujian Province of China","award":["2019I0003"]},{"name":"UK-China Industry Academia Partnership Programme","award":["UK-CIAPP-276"]},{"name":"the Fundamental Research Funds for the Central Universities","award":["20720190009"]},{"name":"the Korea Foundation for Advanced Studies"},{"name":"The Open Fund of Provincial Key Laboratory of Eco-Industrial Green Technology-Wuyi University"},{"name":"The Open Fund of Engineering Research Center of Big Data Application in Private Health Medicine of Fujian Province University","award":["KF2020002"]},{"name":"Fujian Key Laboratory of Automotive Electronics and Electric Drive","award":["KF-X19002"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Comput & Applic"],"published-print":{"date-parts":[[2023,6]]},"DOI":"10.1007\/s00521-021-06149-6","type":"journal-article","created":{"date-parts":[[2021,6,8]],"date-time":"2021-06-08T04:02:47Z","timestamp":1623124967000},"page":"11599-11610","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":45,"title":["A new deep belief network-based multi-task learning for diagnosis of Alzheimer\u2019s disease"],"prefix":"10.1007","volume":"35","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6957-2942","authenticated-orcid":false,"given":"Nianyin","family":"Zeng","sequence":"first","affiliation":[]},{"given":"Han","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yonghong","family":"Peng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,6,8]]},"reference":[{"key":"6149_CR1","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1016\/j.neuroimage.2014.06.077","volume":"101","author":"H Suk","year":"2014","unstructured":"Suk H, Lee S, Shen D (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD\/MCI diagnosis. Neuroimage 101:569\u2013582","journal-title":"Neuroimage"},{"key":"6149_CR2","doi-asserted-by":"crossref","unstructured":"Suk H, Shen D (2013) Deep learning-based feature representation for AD\/MCI classification. Med Image Comput Computer-Assisted Interv. pp\u00a0583\u2013590","DOI":"10.1007\/978-3-642-40763-5_72"},{"key":"6149_CR3","first-page":"141","volume":"21","author":"R Petersen","year":"2002","unstructured":"Petersen R (2002) Mild cognitive impairment: transition from aging to Alzheimer's disease. Neurobiol Aging 21:141\u2013151","journal-title":"Neurobiol Aging"},{"issue":"12","key":"6149_CR4","doi-asserted-by":"crossref","first-page":"1363","DOI":"10.1136\/jnnp.2009.204008","volume":"81","author":"S Cano","year":"2010","unstructured":"Cano S, Posner H, Moline M (2010) The ADAS-cog in Alzheimer's disease clinical trials: psychometric evaluation of the sum and its parts. J Neurol Neurosurg Psychiatry 81(12):1363\u20131368","journal-title":"J Neurol Neurosurg Psychiatry"},{"issue":"1","key":"6149_CR5","first-page":"1","volume":"4","author":"P Vemuri","year":"2012","unstructured":"Vemuri P, Jones D, C Jr (2012) Resting state functional MRI in Alzheimer's disease. Alzheimers Res Therap 4(1):1\u20139","journal-title":"Alzheimers Res Therap"},{"issue":"1","key":"6149_CR6","doi-asserted-by":"crossref","first-page":"121","DOI":"10.3233\/JAD-2010-101521","volume":"23","author":"P Rye","year":"2011","unstructured":"Rye P, Booij B, Grave G (2011) A novel blood test for the early detection of Alzheimer's disease. J Alzheimer's Dis Jad Nol 23(1):121\u2013129","journal-title":"J Alzheimer's Dis Jad Nol"},{"key":"6149_CR7","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.dadm.2016.06.004","volume":"3","author":"S O'Bryant","year":"2016","unstructured":"OBryant S, Edwards M, Johnson L (2016) A blood screening test for Alzheimer's disease. Alzheimer's Dementia 3:83\u201390","journal-title":"Alzheimer's Dementia"},{"issue":"3","key":"6149_CR8","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1016\/j.yexcr.2006.10.028","volume":"313","author":"A Weeraratna","year":"2007","unstructured":"Weeraratna A, Kalehua A, Deleon I (2007) Alterations in immunological and neurological gene expression patterns in Alzheimer's disease tissues. Exp Cell Res 313(3):450\u2013461","journal-title":"Exp Cell Res"},{"issue":"5","key":"6149_CR9","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1007\/BF00314172","volume":"235","author":"H Spinnler","year":"1988","unstructured":"Spinnler H, Sala S (1988) The role of clinical neuropsychology in the neurological diagnosis of Alzheimer's disease. J Neurol 235(5):258\u2013271","journal-title":"J Neurol"},{"issue":"4","key":"6149_CR10","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.neurobiolaging.2014.12.028","volume":"36","author":"G Chauhan","year":"2015","unstructured":"Chauhan G, Adams H (2015) Association of Alzheimer's disease GWAS loci with MRI markers of brain aging. Neurobiol Aging 36(4):7\u201316","journal-title":"Neurobiol Aging"},{"issue":"4","key":"6149_CR11","doi-asserted-by":"crossref","first-page":"775","DOI":"10.3233\/JAD-2011-101371","volume":"24","author":"W Yang","year":"2011","unstructured":"Yang W, Lui R, Gao J (2011) Independent component analysis-based classification of Alzheimer's disease MRI data. J Alzheimer's Dis 24(4):775\u2013783","journal-title":"J Alzheimer's Dis"},{"issue":"4","key":"6149_CR12","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1109\/MC.2011.117","volume":"44","author":"J Ye","year":"2011","unstructured":"Ye J, Wu T, Li J (2011) Machine learning approaches for the neuroimaging study of Alzheimer's disease. Computer 44(4):99\u2013101","journal-title":"Computer"},{"key":"6149_CR13","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fnins.2015.00307","volume":"9","author":"C Salvatore","year":"2015","unstructured":"Salvatore C, Cerasa A, Battista P (2015) Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach. Front Neurosci 9:1\u201313","journal-title":"Front Neurosci"},{"key":"6149_CR14","doi-asserted-by":"crossref","unstructured":"Escudero J, Zajicek J, Ifeachor E (2011) Machine learning classification of MRI features of Alzheimer\u2019s disease and mild cognitive impairment subjects to reduce the sample size in clinical trials. In: International conference of the IEEE engineering in medicine and biology society. pp\u00a07957\u20137960","DOI":"10.1109\/IEMBS.2011.6091962"},{"key":"6149_CR15","doi-asserted-by":"publisher","DOI":"10.1109\/FTC.2016.7821697","author":"S Sarraf","year":"2016","unstructured":"Sarraf S, Tofighi G (2016) Deep learning-based pipeline to recognize Alzheimer's disease using fMRI data. IEEE Future Technol Conf. https:\/\/doi.org\/10.1109\/FTC.2016.7821697","journal-title":"IEEE Future Technol Conf"},{"key":"6149_CR16","unstructured":"Sarraf S, Tofighi G (2016) Classification of Alzheimer\u2019s disease using fMRI data and deep learning convolutional neural networks. arXiv:1603.08631"},{"issue":"7","key":"6149_CR17","doi-asserted-by":"crossref","first-page":"1650025","DOI":"10.1142\/S0129065716500258","volume":"26","author":"A Ortiz","year":"2016","unstructured":"Ortiz A, Munilla J, Gorriz J (2016) Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's disease. Int J Neural Syst 26(7):1650025","journal-title":"Int J Neural Syst"},{"key":"6149_CR18","doi-asserted-by":"crossref","unstructured":"Hu C, Ju R, Shen Y (2016) Clinical decision support for Alzheimer\u2019s disease based on deep learning and brain network. In: IEEE international conference on communications. pp\u00a01\u20136","DOI":"10.1109\/ICC.2016.7510831"},{"key":"6149_CR19","doi-asserted-by":"publisher","DOI":"10.1109\/IVCNZ.2016.7804459","author":"P Bhatkoti","year":"2016","unstructured":"Bhatkoti P, Paul M (2016) Early diagnosis of Alzheimer's disease: a multi-class deep learning framework with modified k-sparse autoencoder classification. Int Conf Image Vis Comput. https:\/\/doi.org\/10.1109\/IVCNZ.2016.7804459","journal-title":"Int Conf Image Vis Comput"},{"issue":"12","key":"6149_CR20","doi-asserted-by":"crossref","first-page":"549","DOI":"10.3390\/info11120549","volume":"11","author":"S Liaqat","year":"2020","unstructured":"Liaqat S, Dashtipour K, Zahid A, Assaleh K, Arshad K, Ramzan N (2020) Detection of atrial fibrillation using a machine learning approach. Information 11(12):549","journal-title":"Information"},{"key":"6149_CR21","doi-asserted-by":"crossref","first-page":"106032","DOI":"10.1016\/j.cmpb.2021.106032","volume":"203","author":"J Liu","year":"2021","unstructured":"Liu J, Li M, Luo Y, Yang S, Li W, Bi Y (2021) Alzheimer's disease detection using depthwise separable convolutional neural networks. Comput Methods Prog Biomed 203:106032","journal-title":"Comput Methods Prog Biomed"},{"issue":"1","key":"6149_CR22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-020-79139-8","volume":"11","author":"J Tian","year":"2021","unstructured":"Tian J, Smith G, Guo H, Liu B, Pan Z, Wang Z, Xiong S, Fang R (2021) Modular machine learning for Alzheimer's disease classification from retinal vasculature. Sci Rep 11(1):1\u201311","journal-title":"Sci Rep"},{"key":"6149_CR23","doi-asserted-by":"crossref","unstructured":"Farooq A, Anwar S, Awais M (2018) A deep CNN based multi-class classification of Alzheimer\u2019s disease using MRI. In: IEEE International conference on imaging systems and techniques. pp\u00a01\u20136","DOI":"10.1109\/IST.2017.8261460"},{"key":"6149_CR24","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1007\/978-3-319-67558-9_19","volume":"10553","author":"K Thung","year":"2017","unstructured":"Thung K, Yap P, Shen D (2017) Multi-stage diagnosis of Alzheimer's disease with incomplete multimodal data via multi-task deep learning. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support 10553:160\u2013168","journal-title":"Deep Learn Med Image Anal Multimodal Learn Clin Decis Support"},{"key":"6149_CR25","doi-asserted-by":"crossref","unstructured":"Islam J, Zhang Y (2017) A novel deep learning based multi-class classification method for Alzheimer\u2019s disease detection using brain MRI data. In: International conference on brain informatics. pp\u00a0213\u2013222","DOI":"10.1007\/978-3-319-70772-3_20"},{"issue":"4","key":"6149_CR26","doi-asserted-by":"crossref","first-page":"1132","DOI":"10.1109\/TBME.2014.2372011","volume":"62","author":"S Liu","year":"2015","unstructured":"Liu S, Liu S, Cai W (2015) Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. IEEE Trans Biomed Eng 62(4):1132\u20131140","journal-title":"IEEE Trans Biomed Eng"},{"issue":"2","key":"6149_CR27","doi-asserted-by":"crossref","first-page":"895","DOI":"10.1016\/j.neuroimage.2011.09.069","volume":"59","author":"D Zhang","year":"2012","unstructured":"Zhang D, Shen D (2012) Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. Neuroimage 59(2):895\u2013907","journal-title":"Neuroimage"},{"issue":"3","key":"6149_CR28","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/0022-3956(75)90026-6","volume":"12","author":"M Folstein","year":"1975","unstructured":"Folstein M, Folstein S, Mchugh P (1975) Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189\u2013198","journal-title":"J Psychiatr Res"},{"issue":"11","key":"6149_CR29","doi-asserted-by":"crossref","first-page":"1356","DOI":"10.1176\/ajp.141.11.1356","volume":"141","author":"W Rosen","year":"1984","unstructured":"Rosen W, Mohs R, Davis K (1984) A new rating scale for Alzheimer's disease. Am J Psychiatr 141(11):1356\u20131364","journal-title":"Am J Psychiatr"},{"issue":"4","key":"6149_CR30","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1002\/jmri.21049","volume":"27","author":"C Jack","year":"2008","unstructured":"Jack C, Bernstein M, Fox N (2008) The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27(4):685\u2013691","journal-title":"J Magn Reson Imaging"},{"issue":"3","key":"6149_CR31","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1002\/hbm.10062","volume":"17","author":"S Smith","year":"2002","unstructured":"Smith S (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143\u2013155","journal-title":"Hum Brain Mapp"},{"issue":"1","key":"6149_CR32","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1001\/jamapsychiatry.2013.2833","volume":"71","author":"S Moeller","year":"2014","unstructured":"Moeller S, Konova A, Parvaz M (2014) Functional, structural, and emotional correlates of impaired insight in cocaine addiction. JAMA Psychiatr 71(1):61\u201370","journal-title":"JAMA Psychiatr"},{"issue":"4","key":"6149_CR33","doi-asserted-by":"crossref","first-page":"391","DOI":"10.3348\/kjr.2012.13.4.391","volume":"13","author":"M Goto","year":"2012","unstructured":"Goto M, Abe O, Miyati T (2012) Influence of signal intensity non-uniformity on brain volumetry using an atlas-based method. Korean J Radiol 13(4):391\u2013402","journal-title":"Korean J Radiol"},{"issue":"2","key":"6149_CR34","first-page":"1","volume":"16","author":"F Nielsen","year":"2002","unstructured":"Nielsen F, Hansen L (2002) Automatic anatomical labeling of Talairach coordinates and generation of volumes of interest via the BrainMap database. Neuroimage 16(2):1\u20132","journal-title":"Neuroimage"},{"issue":"3","key":"6149_CR35","doi-asserted-by":"crossref","first-page":"1233","DOI":"10.1016\/S1053-8119(03)00169-1","volume":"19","author":"J Maldjian","year":"2003","unstructured":"Maldjian J, Laurienti P, Burdette J, Kraft R (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233\u20131239","journal-title":"Neuroimage"},{"issue":"1","key":"6149_CR36","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1016\/j.neuroimage.2003.09.032","volume":"21","author":"J Maldjian","year":"2004","unstructured":"Maldjian J, Laurienti P, Burdette J (2004) Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage 21(1):450\u2013455","journal-title":"Neuroimage"},{"key":"6149_CR37","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1039\/ap9912800320","volume":"28","author":"T Smith","year":"1991","unstructured":"Smith T (1991) Principal component analysis: an introduction. Anal Proc 28:150\u2013151","journal-title":"Anal Proc"},{"issue":"3","key":"6149_CR38","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/S0309-1740(00)00050-4","volume":"56","author":"G Destefanis","year":"2000","unstructured":"Destefanis G, Barge M, Brugiapaglia A (2000) The use of principal component analysis (PCA) to characterize beef. Meat Sci 56(3):255\u2013259","journal-title":"Meat Sci"},{"key":"6149_CR39","doi-asserted-by":"crossref","unstructured":"Fan Y, Kaufer D, Shen D (2010) Joint estimation of multiple clinical variables of neurological diseases from imaging patterns. In: IEEE international symposium on biomedical imaging: from nano to macro. pp\u00a0852\u2013855","DOI":"10.1109\/ISBI.2010.5490120"},{"issue":"4","key":"6149_CR40","doi-asserted-by":"crossref","first-page":"1405","DOI":"10.1016\/j.neuroimage.2010.03.051","volume":"51","author":"C Stonnington","year":"2010","unstructured":"Stonnington C, Chu C, Kloppel S (2010) Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. Neuroimage 51(4):1405\u20131413","journal-title":"Neuroimage"},{"issue":"2","key":"6149_CR41","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1002\/hbm.22642","volume":"36","author":"B Jie","year":"2015","unstructured":"Jie B, Zhang D, Cheng B (2015) Manifold regularized multitask feature learning for multimodality disease classification. Hum Brain Mapp 36(2):489\u2013507","journal-title":"Hum Brain Mapp"},{"issue":"1","key":"6149_CR42","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1111\/j.1467-9868.2005.00532.x","volume":"68","author":"M Yuan","year":"2006","unstructured":"Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc 68(1):49\u201367","journal-title":"J R Stat Soc"},{"key":"6149_CR43","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","volume":"313","author":"G Hinton","year":"2006","unstructured":"Hinton G, Salakhutdinov R (2006) Reducing the dimensionality of data with neural networks. Science 313:504\u2013507","journal-title":"Science"},{"issue":"7","key":"6149_CR44","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","volume":"18","author":"G Hinton","year":"2006","unstructured":"Hinton G, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527\u20131554","journal-title":"Neural Comput"},{"issue":"9","key":"6149_CR45","first-page":"1911","volume":"51","author":"Q L\u00fc","year":"2014","unstructured":"L\u00fc Q, Dou Y, Niu X (2014) Remote sensing image classification based on DBN model. J Comput Res Dev 51(9):1911\u20131918","journal-title":"J Comput Res Dev"},{"key":"6149_CR46","doi-asserted-by":"crossref","unstructured":"Dahl G, Yu D, Deng L (2011) Large vocabulary continuous speech recognition with context-dependent DBN-HMMS. In: International conference on acoustics, speech and signal processing. pp\u00a04688\u20134691","DOI":"10.1109\/ICASSP.2011.5947401"},{"key":"6149_CR47","doi-asserted-by":"crossref","unstructured":"Chen J, Zhou J, Ye J (2011) Integrating low-rank and group-sparse structures for robust multi-task learning. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. pp\u00a021\u201324","DOI":"10.1145\/2020408.2020423"},{"issue":"1","key":"6149_CR48","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava N, Hinton G, Krizhevsky A (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929\u20131958","journal-title":"J Mach Learn Res"},{"issue":"12","key":"6149_CR49","first-page":"3371","volume":"11","author":"P Vincent","year":"2010","unstructured":"Vincent P, Larochelle H, Lajoie I (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11(12):3371\u20133408","journal-title":"J Mach Learn Res"},{"key":"6149_CR50","doi-asserted-by":"crossref","unstructured":"Vincent P, Larochelle H, Bengio Y (2008) Extracting and composing robust features with denoising autoencoders. Int Conf Mach Learn. pp\u00a01096\u20131103","DOI":"10.1145\/1390156.1390294"},{"issue":"5","key":"6149_CR51","doi-asserted-by":"crossref","first-page":"1610","DOI":"10.1109\/JBHI.2015.2429556","volume":"19","author":"F Li","year":"2015","unstructured":"Li F, Tran L, Thung K (2015) A robust deep model for improved classification of AD\/MCI patients. IEEE J Biomed Health Inf 19(5):1610\u20131616","journal-title":"IEEE J Biomed Health Inf"},{"key":"6149_CR52","doi-asserted-by":"crossref","unstructured":"Liu S, Liu S, Cai W (2014) Early diagnosis of Alzheimer\u2019s disease with deep learning. In: IEEE international symposium on biomedical imaging. pp\u00a01015\u20131018","DOI":"10.1109\/ISBI.2014.6868045"},{"issue":"4","key":"6149_CR53","doi-asserted-by":"crossref","first-page":"1305","DOI":"10.1002\/hbm.22254","volume":"35","author":"M Liu","year":"2014","unstructured":"Liu M, Zhang D, Shen D (2014) Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis. Hum Brain Mapp 35(4):1305\u20131319","journal-title":"Hum Brain Mapp"},{"key":"6149_CR54","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/j.neucom.2018.09.001","volume":"320","author":"N Zeng","year":"2018","unstructured":"Zeng N, Qiu H, Wang Z, Liu W (2018) A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease. Neurocomputing 320:195\u2013202","journal-title":"Neurocomputing"},{"issue":"3","key":"6149_CR55","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1177\/155005941104200304","volume":"42","author":"L Trambaiolli","year":"2011","unstructured":"Trambaiolli L, Lorena A, Fraga F (2011) Improving Alzheimer's disease diagnosis with machine learning techniques. Clin Eeg Neurosci 42(3):160\u2013165","journal-title":"Clin Eeg Neurosci"}],"container-title":["Neural Computing and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-021-06149-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00521-021-06149-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-021-06149-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,11]],"date-time":"2023-05-11T17:08:46Z","timestamp":1683824926000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00521-021-06149-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,8]]},"references-count":55,"journal-issue":{"issue":"16","published-print":{"date-parts":[[2023,6]]}},"alternative-id":["6149"],"URL":"https:\/\/doi.org\/10.1007\/s00521-021-06149-6","relation":{},"ISSN":["0941-0643","1433-3058"],"issn-type":[{"value":"0941-0643","type":"print"},{"value":"1433-3058","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,6,8]]},"assertion":[{"value":"3 July 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 May 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 June 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}