{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,7,4]],"date-time":"2022-07-04T21:49:14Z","timestamp":1656971354135},"reference-count":36,"publisher":"Springer Science and Business Media LLC","issue":"13","license":[{"start":{"date-parts":[[2020,11,20]],"date-time":"2020-11-20T00:00:00Z","timestamp":1605830400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,11,20]],"date-time":"2020-11-20T00:00:00Z","timestamp":1605830400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Comput & Applic"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1007\/s00521-020-05503-4","type":"journal-article","created":{"date-parts":[[2020,11,20]],"date-time":"2020-11-20T11:46:01Z","timestamp":1605872761000},"page":"7593-7602","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Synergy between traditional classification and classification based on negative features in deep convolutional neural networks"],"prefix":"10.1007","volume":"33","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7598-9883","authenticated-orcid":false,"given":"Nemanja","family":"Milo\u0161evi\u0107","sequence":"first","affiliation":[]},{"given":"Milo\u0161","family":"Rackovi\u0107","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,20]]},"reference":[{"key":"5503_CR1","doi-asserted-by":"publisher","first-page":"46324","DOI":"10.1109\/ACCESS.2020.2979141","volume":"8","author":"G Aquino","year":"2020","unstructured":"Aquino G, Rubio JDJ, Pacheco J, Gutierrez GJ, Ochoa G, Balcazar R, Cruz DR, Garcia E, Novoa JF, Zacarias A (2020) Novel nonlinear hypothesis for the delta parallel robot modeling. IEEE Access 8:46324\u201346334","journal-title":"IEEE Access"},{"key":"5503_CR2","doi-asserted-by":"publisher","first-page":"297","DOI":"10.1016\/j.neucom.2019.07.106","volume":"390","author":"A Ashfahani","year":"2020","unstructured":"Ashfahani A, Pratama M, Lughofer E, Ong YS (2020) Devdan: deep evolving denoising autoencoder. Neurocomputing 390:297\u2013314","journal-title":"Neurocomputing"},{"key":"5503_CR3","doi-asserted-by":"crossref","unstructured":"Assun\u00e7\u00e3o F, Louren\u00e7o N, Machado P, Ribeiro B (2019) Fast denser: efficient deep neuroevolution. In: European Conference on Genetic Programming, Springer, pp 197\u2013212","DOI":"10.1007\/978-3-030-16670-0_13"},{"key":"5503_CR4","unstructured":"Bastani O, Ioannou Y, Lampropoulos L, Vytiniotis D, Nori A, Criminisi A (2016) Measuring neural net robustness with constraints. In: Advances in Neural Information Processing Systems, pp 2613\u20132621"},{"issue":"8","key":"5503_CR5","doi-asserted-by":"publisher","first-page":"3469","DOI":"10.1007\/s00521-017-3285-0","volume":"31","author":"N Becherer","year":"2019","unstructured":"Becherer N, Pecarina J, Nykl S, Hopkinson K (2019) Improving optimization of convolutional neural networks through parameter fine-tuning. Neural Comput Appl 31(8):3469\u20133479","journal-title":"Neural Comput Appl"},{"key":"5503_CR6","doi-asserted-by":"publisher","unstructured":"Bojarski M, Del\u00a0Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U, Zhang J et\u00a0al (2016) End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316. https:\/\/doi.org\/10.1109\/ivs.2017.7995975","DOI":"10.1109\/ivs.2017.7995975"},{"key":"5503_CR7","doi-asserted-by":"publisher","unstructured":"Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), IEEE, pp 39\u201357. https:\/\/doi.org\/10.1109\/sp.2017.49","DOI":"10.1109\/sp.2017.49"},{"key":"5503_CR8","doi-asserted-by":"publisher","first-page":"103255","DOI":"10.1109\/ACCESS.2019.2929266","volume":"7","author":"HS Chiang","year":"2019","unstructured":"Chiang HS, Chen MY, Huang YJ (2019) Wavelet-based EEG processing for epilepsy detection using fuzzy entropy and associative petri net. IEEE Access 7:103255\u2013103262","journal-title":"IEEE Access"},{"key":"5503_CR9","doi-asserted-by":"crossref","unstructured":"Cohen G, Afshar S, Tapson J, van Schaik A (2017) Emnist: an extension of mnist to handwritten letters. arXiv preprint arXiv:1702.05373","DOI":"10.1109\/IJCNN.2017.7966217"},{"issue":"6","key":"5503_CR19","doi-asserted-by":"publisher","first-page":"1296","DOI":"10.1109\/TFUZZ.2009.2029569","volume":"17","author":"J de Jes\u00fas Rubio","year":"2009","unstructured":"de Jes\u00fas Rubio J (2009) Sofmls: online self-organizing fuzzy modified least-squares network. IEEE Trans Fuzzy Syst 17(6):1296\u20131309","journal-title":"IEEE Trans Fuzzy Syst"},{"key":"5503_CR10","doi-asserted-by":"publisher","unstructured":"Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, IEEE, pp 248\u2013255. https:\/\/doi.org\/10.1109\/cvprw.2009.5206848","DOI":"10.1109\/cvprw.2009.5206848"},{"issue":"6","key":"5503_CR11","doi-asserted-by":"publisher","first-page":"2036","DOI":"10.3390\/app10062036","volume":"10","author":"I Elias","year":"2020","unstructured":"Elias I, Rubio JdJ, Cruz DR, Ochoa G, Novoa JF, Martinez DI, Mu\u00f1iz S, Balcazar R, Garcia E, Juarez CF (2020) Hessian with mini-batches for electrical demand prediction. Appl Sci 10(6):2036","journal-title":"Appl Sci"},{"key":"5503_CR12","doi-asserted-by":"crossref","unstructured":"Elsken T, Metzen JH, Hutter F (2018) Neural architecture search: a survey. arXiv preprint arXiv:1808.05377","DOI":"10.1007\/978-3-030-05318-5_3"},{"key":"5503_CR13","doi-asserted-by":"crossref","unstructured":"Enzweiler M, Eigenstetter A, Schiele B, Gavrila DM (2010) Multi-cue pedestrian classification with partial occlusion handling. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, pp 990\u2013997","DOI":"10.1109\/CVPR.2010.5540111"},{"key":"5503_CR14","unstructured":"FacebookAI: Torchvision. Computer software. Vers. 0.6.0 https:\/\/pytorch.org 2020"},{"key":"5503_CR15","doi-asserted-by":"publisher","unstructured":"Globerson A, Roweis S (2006) Nightmare at test time: robust learning by feature deletion. In: Proceedings of the 23rd International Conference on Machine learning, ACM, pp 353\u2013360. https:\/\/doi.org\/10.1145\/1143844.1143889","DOI":"10.1145\/1143844.1143889"},{"key":"5503_CR16","unstructured":"Goodfellow I, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: International conference on learning representations. arXiv:1412.6572"},{"key":"5503_CR17","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"key":"5503_CR18","doi-asserted-by":"crossref","unstructured":"Huang G, Liu Z, Van Der\u00a0Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 4700\u20134708","DOI":"10.1109\/CVPR.2017.243"},{"key":"5503_CR20","unstructured":"Koch G, Zemel R, Salakhutdinov R (2015) Siamese neural networks for one-shot image recognition. In: ICML deep learning workshop, vol 2. Lille"},{"key":"5503_CR21","unstructured":"Krizhevsky A, Nair V, Hinton G (2014) The cifar-10 dataset. 55, online:http:\/\/www.cs.toronto.edu\/kriz\/cifar.html"},{"key":"5503_CR22","doi-asserted-by":"publisher","unstructured":"Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp 1097\u20131105. https:\/\/doi.org\/10.1145\/3065386","DOI":"10.1145\/3065386"},{"key":"5503_CR23","unstructured":"LeCun Y (1998) The mnist database of handwritten digits. http:\/\/yann.lecun.com\/exdb\/mnist\/"},{"issue":"12","key":"5503_CR24","doi-asserted-by":"publisher","first-page":"1485","DOI":"10.1007\/s00521-016-2639-3","volume":"29","author":"F Meng","year":"2018","unstructured":"Meng F, Qi Z, Tian Y, Niu L (2018) Pedestrian detection based on the privileged information. Neural Comput Appl 29(12):1485\u20131494","journal-title":"Neural Comput Appl"},{"key":"5503_CR25","first-page":"234","volume":"221","author":"N Milo\u0161evi\u0107","year":"2019","unstructured":"Milo\u0161evi\u0107 N, Rackovi\u0107 M (2019) Classification based on missing features in deep convolutional neural networks. Neural Netw World 221:234","journal-title":"Neural Netw World"},{"key":"5503_CR26","doi-asserted-by":"publisher","unstructured":"Moosavi-Dezfooli SM, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2574\u20132582. https:\/\/doi.org\/10.1109\/cvpr.2016.282","DOI":"10.1109\/cvpr.2016.282"},{"key":"5503_CR27","doi-asserted-by":"crossref","unstructured":"Papernot N, McDaniel P, Goodfellow I, Jha S, Celik ZB, Swami A (2017) Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp 506\u2013519","DOI":"10.1145\/3052973.3053009"},{"key":"5503_CR28","unstructured":"Paszke A, Gross S, Chintala S, Chanan G (2020) Pytorch. Computer software. Vers. 1.5.0 https:\/\/pytorch.org"},{"key":"5503_CR29","unstructured":"Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. NIPS 2017 Workshop Autodiff Submission. https:\/\/openreview.net\/forum?id=BJJsrmfCZ"},{"issue":"2","key":"5503_CR30","doi-asserted-by":"publisher","first-page":"467","DOI":"10.2298\/CSIS150815004P","volume":"14","author":"P Pecev","year":"2017","unstructured":"Pecev P, Rackovic M (2017) LTR-MDTS structure: a structure for multiple dependent time series prediction. Comput Sci Inf Syst 14(2):467\u2013490. https:\/\/doi.org\/10.2298\/CSIS150815004P","journal-title":"Comput Sci Inf Syst"},{"issue":"23","key":"5503_CR31","doi-asserted-by":"publisher","first-page":"16389","DOI":"10.1007\/s11042-015-2938-1","volume":"75","author":"P Pecev","year":"2016","unstructured":"Pecev P, Rackovi\u0107 M, Ivkovi\u0107 M (2016) A system for deductive prediction and analysis of movement of basketball referees. Multimed Tools Appl 75(23):16389\u201316416. https:\/\/doi.org\/10.1007\/s11042-015-2938-1","journal-title":"Multimed Tools Appl"},{"key":"5503_CR32","unstructured":"Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2013)Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199. https:\/\/arxiv.org\/abs\/1312.6199"},{"issue":"5","key":"5503_CR33","doi-asserted-by":"publisher","first-page":"1299","DOI":"10.1109\/TMI.2016.2535302","volume":"35","author":"N Tajbakhsh","year":"2016","unstructured":"Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299\u20131312","journal-title":"IEEE Trans Med Imaging"},{"issue":"Feb","key":"5503_CR34","first-page":"207","volume":"10","author":"KQ, Weinberger","year":"2009","unstructured":"Weinberger KQ, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res 10(Feb):207\u2013244","journal-title":"J Mach Learn Res"},{"issue":"1","key":"5503_CR35","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1186\/s40537-016-0043-6","volume":"3","author":"K Weiss","year":"2016","unstructured":"Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3(1):9","journal-title":"J Big Data"},{"key":"5503_CR36","doi-asserted-by":"crossref","unstructured":"Xie S, Girshick R, Doll\u00e1r P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1492\u20131500","DOI":"10.1109\/CVPR.2017.634"}],"container-title":["Neural Computing and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-020-05503-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00521-020-05503-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-020-05503-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,6,24]],"date-time":"2021-06-24T06:09:33Z","timestamp":1624514973000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00521-020-05503-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11,20]]},"references-count":36,"journal-issue":{"issue":"13","published-print":{"date-parts":[[2021,7]]}},"alternative-id":["5503"],"URL":"https:\/\/doi.org\/10.1007\/s00521-020-05503-4","relation":{},"ISSN":["0941-0643","1433-3058"],"issn-type":[{"value":"0941-0643","type":"print"},{"value":"1433-3058","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,11,20]]},"assertion":[{"value":"5 June 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 November 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 November 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with ethical standards"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}